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Nonnegative Tensor Cofactorization
and Its Unified Solution

Xiaobai Liu, Qian Xu, Shuicheng Yan, Gang Wang, Hai Jin, and Seong-Whan Lee

Abstract—1In this paper, we present a new joint factorization
algorithm, called nonnegative tensor cofactorization (NTCoF).
The key idea is to simultaneously factorize multiple visual fea-
tures of the same data into nonnegative dimensionality-reduced
representations, and meanwhile, to maximize the correlations
of the low-dimensional representations. The data are generally
encoded as tensors of arbitrary order, rather than vectors, to
preserve the original data structures. NTCoF provides a simple
and efficient way to fuse multiple complementary features for
enhancing the discriminative power of the desired rank-reduced
representations under the nonnegative constraints. We formulate
the related objectives with a block-wise quadratic nonnegative
function. To optimize, a unified convergence provable solution
is developed. This solution is applicable for any nonnegative
optimization problems with block-wise quadratic objective func-
tions, and thus offer an unified platform based on which specific
solution can be directly derived by skipping over tedious proof
about algorithmic convergence. We apply the proposed algorithm
and solution on three image tasks, face recognition, multiclass
image categorization, and multilabel image annotation. Results
with comparisons on public challenging data sets show that the
proposed algorithm can outperform both the traditional nonneg-
ative methods and the popular feature combination methods.

Index Terms— Nonnegative matrix/tensor factorization, feature
combination, multi-task learning, multi-class image classification.

I. INTRODUCTION

ONNEGATIVE matrix factorization (NMF) [24] is pro-
posed to decompose a matrix into a product of lower-rank
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nonnegative matrices. It is further extended by tensor represen-
tation, known as nonnegative tensor factorization (NTF) [37].
Nonnegative constraints are enforced to allow only additive
combinations. An NMF/NTF approach usually results in a
rank-reduced representation of the original data. A recent
survey on NMF/NTF is referred to [4].

In this work, we further investigate the NMF/NTF and
particularly consider the feature combination problem in
computer vision. The major motivation beyond feature combi-
nation is to adaptively fuse a set of diverse yet complementary
feature spaces, e.g., color, shape or texture. Generally, different
feature descriptors are discriminative for different classes. For
example, color based features usually perform well for differ-
entiating road from sky, but not so effective for classifying the
buildings from cars. To enhance the robustness of the desired
representations, many efforts have been devoted to exploring
multiple complementary features [16], [48]. Our method can
also be applied to utilize multiple modalities of multimedia
content (e.g. visual, audio, emotions, touch etc) in multimedia
processing tasks.

Following the above methodology, we present a novel
feature fusion algorithm based on data factorization, called
nonnegative tensor co-factorization (NTCoF). The goal is
to factorize multiple different yet complementary feature
representations of the same data by synchronizing the
inter-feature correlation, such that the factorization under one
feature representation can well harness the information of
other representations. Therefore, there are two general pur-
poses in our approach: i) minimizing the factorization residues
to obtain optimal nonnegative low-dimensional representation
of the data under each feature; and ii) maximizing the
correlation between the desired low-dimensional represen-
tations of the same datum. We integrate these two pur-
poses into a block-wise convex quadratic function with
nonnegative constraints, which expresses the data with tensors
of arbitrary order (e.g. > 2) to preserve the original data
structures.

The optimization problem of NTCoF, though intractable,
can be divided into several subproblems and solved by the
alternate optimization techniques [24]. Based on the same
strategy, this work further contributes a unified framework
that can provide theoretically provable convergent solutions
to general data factorization problems. The solution is under
a wild condition, since it only requires the objective function
is block-wise quadratic which most of existing nonnegative
problems have. This solution can favor the specific formula-
tions by skipping over the tedious mathematical proof, and
thus serves as a ‘one-stop’ toolkit for solving newly proposed
data factorization problems.
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The proposed NTCoF method formulates the discriminative
data factorization problem in the setting of multi-view learning
or multi-task learning [33], [51]. Here one task is referred
to inferring the optimal factorization of the data under one
visual feature. We aim to jointly estimate the factorizations
under multiple feature representations, and impose a cross-
task constraint to maximize the correlation between the desired
low-dimensionality representations. This cross-task constraint
is valuable since factorizations under one feature may favor
different coefficients, yet enforcing the cross-task consistency
usually leads to robust coefficient estimation. In this context,
we can borrow the strength of multi-task learning to improve
the discriminative power of the dimensionality-reduced repre-
sentations. To our best knowledge, the work of NTCoF is the
first time to utilize cross-feature strategy to enhance the dis-
criminative power of nonnegative data factorizations. We apply
NTCoF for three image tasks, face recognition, multi-class
image categorization and multi-label image annotation, and
compare it to the traditional nonnegative methods and feature
combination methods on public datasets.

A. Related Works

This work is closely related to the advances in machine
learning and computer vision, which are reviewed from three
aspects, nonnegative matrix factorization (NMF) and related
optimization, multi-tasks learning and correlation analysis.

There exist many efforts on NMF related problems, and
the work of Lee and Seung [24] brings much attention to
NMF in both machine learning and computer vision com-
munities. Many alternate optimization strategies have been
proposed to solve the NMF/NTF related problems, and can
be roughly divided into three categories [4]. 1) Alternate
least squares methods. It sequentially minimizes one factor
under the nonnegative constraint with other factors fixed. Thus
the original problem is divided into multiple sub-problems
and each can be solved by traditional numerical optimization
techniques. For example, Chu et al. [11] propose to use the
projected Newton’s method for optimization. The convergence
of this alternate strategy is proved by Paatero et al. in [35].
ii) Gradient descent methods. This category generally first
reformulates the constrained NMF/NTF related problem into
an unconstrained one, and then applies the standard gradient
descent approach to obtain the locally optimal factorization,
in an alternate way. A key component of this strategy is how
to choose an appropriate step size. Lin et al. [27] utilize a
projected gradient approach to heuristically select the optimal
step size, which shows better convergence performance than
the ones with fixed step sizes. However, the usage of certain
auxiliary constraint for NMF/NTF may break down the bound-
constrained optimization assumption, thus limit its applica-
bility. iii) multiplicative update methods. For each iteration,
each element of the factors is multiplied by a nonnegative
factor, and thus all the elements are strictly nonnegative if the
initial factor are nonnegative. The pioneering work is presented
by Lee et al. [24], with many extensions and followups
[26], [36], [42]. In particular, Gillis et al. [17] proposed to
accelerate the multiplicative update procedure by aggressively
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updating one factor while keeping the other factor fixed.
However, one open issue of this strategy is the high complexity
and difficulty in proving the algorithmic convergence. The lat-
ter becomes even worse when NMF/NTF related formulation
contains auxiliary regularization terms. In this work, we will
develop a unified solution to above nonnegative problems with
block-wise quadratic objective function.

Multi-task learning has been extensively studied in both
theory and practice in the past literature. The basic methodol-
ogy is to learn multiple different yet correlated tasks together,
and meanwhile, to maximize the inter-task correlation. In
particular, similar idea has been widely used to combine
multiple types of features in class-level object recognition and
image classification. One popular method in computer vision
literature is Multiple Kernel Learning (MKL), that linearly
combines similarity functions between images [16], [41], [32].
Yuan et al. present a multi-task joint sparsity algorithm for
feature fusion and achieve impressive results on multiple
datasets [48]. Recently, Han et al. [18] assume the input data
in multiple tasks are generated from a latent common domain
and proposed a latent probit model to jointly learn the domain
transforms. Yang et al. [46] consider the feature correlations as
well and presented a feature selection method. In comparisons,
our method takes advantages of the non-negativity analysis
for feature fusions. Non-negativity is a natural choice while
applying factorization techniques for image related problems
as shown in [4].

Another work related with NTCoF is the Canonical Corre-
lation Analysis (CCA) [19], which has been widely used for
uncovering the pair-wise correlation between two or multiple
sets of variables. For example, Fu ef al. in [15] propose to fuse
multiple features by seeking the optimal subspace and simulta-
neously maximizing the sum of canonical correlation between
different subspace representations of the same sample.
In contrast, NTCoF is characterized by following aspects.
(1) it utilizes inter-representation correlation as a type of soft
constraint for data factorization, and preserve the nonnegativity
of the synchronized components in multiple low-dimensional
representations. Nonnegativity is intuitively natural, especially
for the image tasks to study, which is however not preserved
by CCA methods [15]. (ii) NTCoF could seek good decompo-
sitions through using multiple cross-modality features (either
the visual features or the manual annotations). In contrast,
the method in [19] can only handle two feature sets.
(iii) NTCoF is formulated based on the tensor representa-
tion, which considers each input image as a two-dimensional
matrix, instead of vector. It has been recognized [4] that
vectorizing images usually leads to the loss of local structure
information, which is crucial for classification tasks. The
advantages of NTCoF over CCA will be demonstrated by
extensive experiments with comparisons.

II. NONNEGATIVE TENSOR CO-FACTORIZATION

The basic idea of nonnegative tensor co-factorization
(NTCoF) is to adaptively combine a set of diverse yet com-
plementary feature spaces, either appearance features based
on color, shape and texture, or manually annotated class
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information, e.g., labels, keywords or tags. It has been demon-
strated in the past literature that combining multiple features
will improve the discriminative power as compared to using
single feature type. Following the same methodology, in this
work, we extend the nonnegative data factorization to multi-
task setting, so the desired dimension-reduction representation
under one feature can well harness the knowledge from the
representations under other features. This new method can
naturally take advantages of the nonnegativity analysis, data
factorization, and cross-task consistency.

Let X" =[], &), ..., Xy ], denote the n'" order tensor
under the m'" feature, and each datum is a (n — 1)”’ order
tensor X" € RAvxdyXexdn—t py — 1 M. M is the number of
feature representations extracted for each image. dj, denotes
the dimension of the " order where b = 1..n. Notice n
is usually 3 for image tasks, and d,, is the total number of
training images. We assume that X is nonnegative without
loss of generalization.

A. Objective-1: Data Reconstruction

The task of nonnegative tensor factorization is to derive a set
of nonnegative bases which are linearly mixed by nonnegative
encoding coefficients. Let k denote the number of the desired
bases. The factorization of X™ can be represented as the sum
of k rank-1 tensors, taking the following form,

k
m m
i=1

ou "M eu™ (1)

where ® denotes the Kronecker product operator, uf’ " denotes

a rank-1 tensor indexed by i = 1.k,b = 1l.n — 1, and
m = 1..M. For clarity, we introduce a row vector H;" so
ul™ = Hi"T where 7 indicates the transpose of a matrix.

Let 7" = (uf-""@)z;} = ullm ® uf’m ® u?ilm to
facilitate presentation. Each datum A" is encoded as a super-
position of {",. ..,r,i”, and the reconstruction coefficients
are H{",..., H". The corresponding objective function to

optimize is,

arg h’gmn ZHX'" z " ® H" s.t. ué’m, h,™>0
Lihi™

@ FWU™, H)=2 X" -

where ||-|| indicates the Frobenius norm of a matrix. Let H" =
(HT, .. H'TYT € RM*dn. Usually, k < min([T}Z} dp, dn)s
and H™ could be considered as the dimensionality-reduced
representation of A" with the objective of best reconstruction
under nonnegative constraints.

B. Objective-1I: Mutual Correlation

In addition to minimizing the data reconstruction errors
in Eq. (2), another goal of nonnegative tensor co-factorization
(NTCoF) is to maximize the mutual correlation between the
individual factorizations under different features. This can
be achieved by maximizing the sum of pair-wise correlation
between the desired low-dimensional representations of the
same datum. Formally, in order to optimize the above two
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purposes in the same objective function, we divide the coeffi-
cients matrix H™ into two non-overlapping parts. Let

Hm
o [H} 5
where H™ € R9%dn and A™ ¢ R*—9*dn Herein, H™ is
desirable for certain discriminative purpose, e.g. classifica-
tion, while the whole H™ is used for the purpose of data
reconstruction. Same strategy has been used in previous works
[42], [45]. Denote U”" = [u8", u", ..., ub"1 € R%>k as the
basis matrix, and H = [H'; H? ... HM]. Accordingly, we
divide U?" into two parts,

me _ [me, me] (4)

where U?" € R%*4 and U?" € R»**=9)_ Let (fz)? denote
the j'" column of H™. Thus, the goal of maximizing the pair-
wise correlation of multiple factorizations can be encoded as,

max > (b)) )] 5)

jum#n

Since U”" is the complementary space of U”", we can revert

to optimize

. T romornT (—
n}}n z k=) (h)’}'(h)? k=)
j.m,n

= ml_}n Tr(HAT EMU—0xMk=q)y (6)

where Tr(-) returns the trace of a matrix, e®=9 denotes

an all-one column vector of (k — g)-dimension and
EMUk—q)xMk-q) ¢ RMEk=q)xMk=9) denotes an all-one

matrix.

C. Unified Objective Function

We combine the objectives of Eq. (2) and Eq. (6) into a
unified objective function,

Tim ® Him||2
i=1

FATFH(QBAT QT EMU—0xMU=a)y ¢, b gm >0 (7)
where,
n—1 ) M
:Hdiag{Qb ) AN Lan ®)
b=1
with,
0" =diag(1ay"|,....1a}" 1} )

| - | denotes the £1-norm of a vector, and 1 is a weighting
constant. Herein, Q is introduced to scale the coefficients H
using the norms of basis, and to avoid the trial solution [42].
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III. UNIFIED SOLUTION TO NONNEGATIVE
DATA FACTORIZATION PROBLEMS

Eq. (7) is a quadratic convex function with respect to U™
and H™ respectively, though intractable, it can be solved
by alternate optimization techniques [24], [28], [42]. Here,
we aim to develop a unified solution to these problems,
which is characterized by: 1) it provides a unified solution
to nonnegative data factorization problems with block-wise
quadratic objective functions (regularized or not, unsupervised
or supervised), and 2) it can be used as a general template to
derive update rules for new optimization problems, which are
theoretically correct and convergent. The only assumption of
this unified solution is that the objective function is block-
wise quadratic, and thus it is widely applicable for a large
community of nonnegative data factorization problems.

A. Assumption and Update Rules

The objective function of nonnegative problems usually
contains one data reconstruction term and one regularization
term, as in Eq. (7). Formally, we denote F((Ub)z;i, H) as
the objective function to optimize and have the following
assumption.

Assumption : The objective function F((Ub)Z;i, H) is
assumed block-wise quadratic, namely, when (U )Z;} are
fixed, F is quadratic with respect to H, and on the other
hand, when H and (U 1’);;11’ b is fixed, F is quadratic with
respect to U b,

The objective function is often of high order although block-
wise quadratic, and generally a closed-form solution does not
exist. This high-order intractable optimization problem can be
transformed into a set of tractable sub-problems, and achieve
the convergence to a local optimum in an alternate way. Here,
we adopts the multiplicative nonnegative update rules method
to optimize (U b)Z;} and H.

For given H and (U 1’)’;;11, p4p At the current step, the
objective function F with respect to U can be rewritten as,

b b —1 b
F(U?) = FWUP, UPYIZ) e H), 5.2 UP 0. (10)

As the objective function F(U®) is quadratic, its derivative
with respect to U b is then of first order, which can be
expressed in the form,

b K
%:;AIUI’BH-C, (11)
where A!, B!, and C are real-value constant matrices.
Although theoretically K shall be very large to obtain such
a general form, many popular objective functions often lead
to very small K (even with K = 1) as introduced afterward.

Letting ¢;; denote the Lagrange multiplier for constraint
Uil;. > 0 and @ = [¢;;], we apply the Karush-Kuhn-Tucker
(KKT) condition [44] of ¢;; Uil; = 0 to the derivative of
Lagrange function and obtain

0.

K
> (A'UPBY UL + CiUl =
=1
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We decompose the matrix A/, B! and C as the difference of
two nonnegative parts, denoted as A = A/t — A= Bl =
B — B!~ and C = CT — C~, respectively. Herein, for Afj,
only one of the Afj+ and Afj_ can be nonzero, which is also

applicable for Bilj and C;;. Thus, we can obtain the relation
update rule, which is consequently used as

[Zlkzl(Al+UbBl_+A1_UbBl+)+C_]ij
[Zlkzl (AHUD BH + AI-Ub BI=)+C+];; ’

b b
Ul-j <~ Ul-j X

12)

Appendix-A gives the mathematical proof about the con-
vergence of the above update rules. The rules for (U” )Z;%
and H can be derived in the same fashion. Once initializing
the factors, namely U b™ and H™, the optimization procedure
alternately iterates respective multiplicative update rules till
convergence.

B. Unified Solution as a General Optimization Template

The above unified solution to nonnegative data factorization
problems can be taken as a general template to re-explain a
large community of nonnegative data factorization algorithms.
Specially, for nonnegative matrix factorization problems, the
specific update rules for certain block-wise quadratic objective
function can be obtained in two steps: i) calculate the partial
derivative with respect to each of two factor matrices to
determine the parameters defined in Eqn. (12), including
K,Al,B',C,1 = 1..K, and ii) obtain the update rules by
substituting the parameters in Eqn. (12).

Table I summarizes the application of the solution for
NMF [24], projective NMF [49], semi-NMF [9], and convex
NMF [9]. Herein, X denotes the input matrix, and the basic
goal of above algorithms is to factorize X into the product
of a base matrix W and a coefficient matrix H. For each
algorithm, we show the algorithm name in the 1’ column,
the corresponding objective function in the 2"¢ column, and
the solution parameters while deriving the update rules of W
for given H as well as the derived update rule for W in the
374 column. Note that: i) we do not report the details on
the update rules for H since it has the same form as that of
that for W; ii) convex NMF belongs to semi-nonnegative data
factorization, and the input data matrix X may have mixed
signs; iii) although the update rules for PNMF-I [49] can
be derived, it however cannot be proved convergent within
the proposed framework, since A;“ and A;r are not constant
matrices and then the Eqn. (32) cannot be guaranteed, and
iv) in the objective function of the manifold NMF [6], the
matrix L represents the graph Laplacian matrix, defined as
L = D — G, where § is the similarity matrix defined on the
specific graph and D is a diagonal matrix whose entries are
column sums of G, namely D;; = Zj Gij.

From Table I, we can observe that most popular NMF
related algorithms can be unified within the same framework.
It is worthy highlighting that this unified solution can relieve
the researchers from tedious mathematical deduction on updat-
ing rules and proof of the algorithmic convergence.
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TABLE I
A UNIFIED RE-DERIVING OF A LARGE COMMUNITY OF NMF/NTF RELATED PROBLEMS. THE FIRST COLUMN INDICATES THE ALGORITHMS NAME.

FOR EACH ALGORITHM, THE CORRESPONDING THREE ROWS SHOW, FROM TOP TO BOTTOM, THE OBJECTIVE FUNCTION, PARAMETERS

FROM THE PARTIAL DERIVATIVE IN EQN. (12), AND THE DERIVED UPDATE RULE. HERE, WE SHOW THE RULES OF W FOR GIVEN

H ONLY, AND THE UPDATE RULE OF H CAN BE OBTAINED BY USING THE SAME PROCEDURE

Objective function | F(W, H; X) = [|[X — WHJ? X >0
NMF [24] HK=1;
Parameters 2)Ct =0, =2XHT,
3) At =25, Al =0,B'* = HHT B~ =0.
XHT), .
Rules Wij = Wi]' X W
Objective function | F(W; X) = | X —WWTX]|?, X >0
PNMEF-I [50] HK = 3;
2)Ct=0,C~=0;
Parameters HAM =0,A1- =2XXT Bt =] Bl- =0
4) A%t = WWTXXT A2 = 0, B2 — I, B2 — 0;
5) A3t = XTWWT A3— =0,B3t =1,B3 =0.
— 2(XXTW)y,
Rules Wij = Wij x (WWTXXTW+XXTJVVWTW)”
Objective function | F(W, H; X) = | X —WH|? +tr(WTW — 1), X >0

2)Ct =0,0- =2(XHT);
3) At =21, A'~ =0,B'* = HHT ,Bl— =0;
4) A2+ =2J A%~ =0,B?t =1 B2~ =0.

(xHT))yy
(WHHT+W);

FOW.H:X) = [X — XWH]|,

Orthogonal NMF [10] 1) K=2;
Parameters
Rules Wi = Wij X
Objective function
Convex NMF [9] DK =1;
Parameters

)0t =2(XTXHT)~
NAM =2(xTx)+

,C~ =2(XTXHT)*
LAV =2(XTX)~, B = HHT B! =0

[(XTXH)TH(XTX)"WHHT];;

Rules Wis = Wi X [(XTX BT+ ST FWHHT]:;~
Objective function | F(W, H; X) = | X — WH|? + \Tr(HLHT),
Manifold NMF [6] DK =1,
Parameters 2)Ct =0,C~ = 2XHT,
At =25, A1~ =0,B'* = HHT B!~ =0.
XHT),
Rules Wij = Wz‘j X —(‘EVHH%)JI»]' .

Tensor based MNGE [43]

Refer to the original paper [43], due to space limitation.

C. Optimization of Eq. (7)

Based on the solution platform, we briefly introduce the
derivation of the update rules for solving Eq. (7).

We first derive an update rule for U bm, with other factors
fixed at the current step. The objective function of Eq. (7) with
respect to UP" can be simplified as,

F(me) — Z ”X(b) me Zum ”2

+/1Tr(Q1:IﬁTQTEM(k_q)XM(k_q)), (13)

where X(b) € R%*Uprix..xdyxdix..xdp-1) i obtained by
flatting the tensor A" along the bh dlrectlon [42] and
Z"" is a matrix in which the i’ row is (u ®)p 1 ®

Him(®ufm)l;)=1]T~
The derivative of F(U?™) with respect to U?" is

af]% = —2xy 2" 2" 2 2" 4 221 0% 9 s M,
(14)
with
s = plhx0= q’z omamA™ ([To.  as)

p#b

where 0%*4 ¢ R%>4 ig an all-zero matrix and E%>*=4) ¢
R¥%>(k=4) ig an all-one matrix.
Following [24], we can obtain the update rule for U b m,
WIT

. . (16)
i (meZumZumT +/1[0dbxq,SH])ij

U™y < u

After updating the matrix U®", we normalize the vectors
uf’ as conventionally [42], and consequently convey the
norms to the coefficient matrix H™ to keep the objective value

at the current step. Let Hl.m denote the i'" row of H™, we have,

n—1
bm .
H" < H" x [T 1",V i,

(17)
b

" = " ", (18)

Then, we simplify the Eq. (7) with respect to H™ as

F(H™) = Z IXGy — H" 2"

+/1Tr(HﬁTEM(k_‘7)XM(k_")) (19)
where X{1) € RIx(Z1dn) and H™ e Rkxdn zW" ¢
ka(nz;}d”) is a matrix, where the " rtow is

1m bM\n—1-T
[u; (@u;"), 2]
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Algorithm 1 Nonnegative Tensor Co-Factorization

1: Input: M n-order tensorsX™ = [X]",...,XN],m =
1,..,M;

2: Initialization, U™ = rand(dy, k),b=1,..,n—1, H™ =
rand(k, N);

3: For t=1: T},4, (iteration body),
1) Update U*™ Vb, m by Eq. (18);
2) Hi™ < H™ x [[}= [u2™|,V i
3) ™ =l [,V
4) Update H™,Vm by Eq. (23);
4: Output: Base matrices U bm; coefficient matrices H™.

The partial derivative of F(H™) with respect to H™ is,

or
oH™

m mT
=—2z,mxn T oz 7" gm

()
01 Xdp }

Et-a)x(-0) 5 fym (20)

=]

where E*—0xk=q) ¢ pk—q)x(k=4) ig an all-one matrix.
Following [24], we can obtain the update rule for H™,

(Z" X" ij

H"«—H" x
17 17 qud”

Ek—a)x(k—q) gH }ff'
21

(ththTHm 42 |:

Algorithm 1 summarizes the entire procedure of NTCoF.
The update rules are performed iteratively to optimize the
objective function in Eq. (7). NTCoF can be used for a
number of data analysis tasks, under supervised or unsuper-
vised settings. It is worthy highlighting that while the input
data are provided in the form of matrix, NTCoF degenerates to
two-dimensional matrix co-factorization (NTCoF-2D), which
can also be solved by Algorithm 1.

IV. CLASSIFICATION VIA CO-FACTORIZATION

We discuss in this section how to infer discriminative repre-
sentations, based on the proposed co-factorization algorithm.
We consider three multi-class classification tasks, including
face recognition, general image categorization, and multi-label
image annotation.

Suppose multiple factorizations of the test data and the
training data are obtained by NTCoF or other algorithms, one
common solution to learning discriminative models [42] is
simply based on the Nearest Neighbor (NN) classifier. First,
NN is used to compute for the test sample the confidences
of belonging to specific categories under each feature. Then,
the confidences over all features are accumulated and the class
that achieves the highest accumulated confidence is assigned to
the test sample. However, this simply voting strategy does not
consider the inter-representation correlation that may provide
additional discriminative power.

In this work, we utilize the Multi-Task Joint Sparse
Representation (MTJISR) [48] to fully take advantage of the
factorization results of NTCoF. Methodologically, MTJSR
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belongs to the sparse learning methods called Multi-Task Joint
Covariate Selection (MTJICS) [33], which can be regarded as
a combined model of group Lasso and multi-task Lasso [51].
By penalizing the sum of {>-norms of the blocks of coef-
ficients associated with each variable group across different
tasks, similar sparsity patterns in all models are encouraged.
Particularly, in this work, the sparse reconstruction of one
test datum under one feature is referred to as one task. The
goal of joint sparsity can be achieved by imposing ¢ >-norm
constraint on the reconstruction coefficients.

We extract multiple different visual features, e.g. colors,
gradients, for each image pixel, and collect multiple feature
matrices as descriptors. These two-dimension matrixes are
further concatenated along the 3" dimension to form the 3"
tensors, served as the inputs of NTCoF. Once obtained the low-
dimensional representations of these images and the desired
basis by NTCoF, we can project the test image into the same
low-dimensional subspaces using the method in [42], assuming
the learnt basis are fixed.

Let HY = [hyl,...,hyM ] denote the low-dimensional
representation of the test image, h/" denotes the
dimensionality-reduced representation of the ;' training
image under the m’ h feature, a{’}] denotes the reconstruction
coefficient associated with the j* sample, and « i =
[a[lj], e, af‘f]] denotes the coefficient vector associated with
the j" training sample under different features. The joint
reconstructions of A¥™,m = 1..M, over all the training
images can be obtained by solving following program,

M N M
arglg,i,p% D" =Rl P+ D eyl (22)
m=1 j=1 j=1
where f is a tunable constant. Eq (22) is a convex but
non-smooth quadratic function, and we choose to use
the Accelerated Proximal Gradient (APG) method [48] to
efficiently solve it.

A. App-I: Multi-Class Image Classification

We classify the test image based on how well it can be
recovered from the reconstruction coefficients associated with
all the training images of each category. Letting L denote the
total number of categories and a™* denote the optimal coeffi-
cients solved from Eq. (22), image classification is performed
in favor of the category with the lowest total reconstruction
error accumulated over all the M tasks,

M N
. y"’ _ . m __m* 2
arg _min >[5 =2 00, ohfa" P (23)
m=1 j=1
where 6(j, ¢) takes 1 when the j training sample contains
the label ¢, or 0 otherwise.

B. App-11: Multi-Label Image Annotation

The task of multi-label image annotation is to predict the
class labels for the test image, given a set of training images
that are provided with label annotations. Let z/ e RIX!
indicate the annotated label vector of the j' training image,
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where the binary component z/(c) takes 1 when the j'”
image contains the label ¢, or 0 otherwise. Given the coef-
ficients a™* solved from Eq. (22), we can propagate the
label annotations of the training images to the test image as
follows,

M
2= Z sz“mikj]-

m=1 j

(24)

The desired label vector z¥ associates each potential label
with one confidence. To obtain the final annotation for the
test image, we can simple select a fixed number of top-ranked
labels, or select the labels scored larger than a threshold.

V. EXPERIMENTS

In this section, we evaluate the proposed nonnegative tensor
co-factorization (NTCoF) algorithm for three image prob-
lems, including face recognition, multi-class image catego-
rization and multi-label image annotation, and compare it
to respective popular algorithms on publicly available image
datasets.

A. Exp-1: Face Recognition

We evaluate the proposed NTCoF for face recognition
on two databases, Yale,! and CMU PIE [39]. Yale con-
tains 165 grayscale images of 15 subjects. There are 11
images per subject, and we use 5 images for training
and the rest 6 images for testing. CMU PIE database
contains 41,368 images of 68 people, we use the sub-
set selected in [7]. It contains 170 images for each of
the 68 subjects. Among the total of 11,560 images, 20
images per subject are randomly selected as the training
set and the rest images are used for testing. We crop the
face regions and resize the cropped images to be 32 x 32
pixels.

We extract three visual features for each image pixel. The
first one is the pixel intensity, which is normalized to be
within [0, 1]. The second one is the sum of square of the
gradient magnitudes on vertical and horizontal directions.
The third one uses Local Binary Pattern (LBP) feature [1]
and describes each pixel as one of 59 8-bit patterns. The
pattern is extracted for each pixel from the surrounding
window of 8 x 8 pixels. In order to make the binary patterns
of the LBP feature comparable with each other, we transform
the patterns to one-dimensional decimals while preserving
the pair-wise similarities between patterns measured by the
Hamming metric. Formally, let p;, p; denote two local binary
patterns, H(p;, p;) denote the Hamming distance between
patterns p; and p;. Letting s;,s; denote the desired values,
the related optimization has following form,

rF@?Znsi —sj I exp(=H(pi. pj)}. st D 57 =1, (25)
iz i

which is a typical embedding problem and thus can be
efficiently solved by the Laplacian Eigenmap method [2].

1 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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We evaluate following algorithms for comparisons: 1) prin-
cipal component analysis (PCA) [40]; 2) nonnegative matrix
factorization (NMF') [24]; 3) nonnegative tensor factorization
(NTF) [37]; and 4) multiple feature fusion via canonical corre-
lation analysis (mCCA) [15]. For PCA or NMF, we first apply
it under every single feature to obtain the dimensionality-
reduction representations of training samples independently.
Then, NN classifier (augmented with the voting schema as
introduced in Section IV) or MTISR classifier is utilized
to estimate the category label for the testing sample. For
these two algorithms, each image is described as a histogram
of quantized intensities, a histogram of quantized gradient
magnitudes, or a histogram of binary patterns, and the feature
dimensions are 256, 64 or 59 respectively. Differently, NTF
and mCCA can directly handle multiple feature representa-
tions. For NTF, we describe each image under one feature as a
feature matrix, and concatenate all feature matrices under one
feature along the 3'"-dimension to form one 3-order tensor.
These tensors are further concatenated to form a 4-order tensor
as the algorithm input. For mCCA, each image is described
as above three feature histograms. In addition, we implement
two variants of the proposed NTCoF method. 5) NTCoF-3D,
that describes each image under a feature as a two-dimension
feature matrix (as introduced in Section IV). 6) NTCoF-2D,
that describes each image under a feature as one histogram.

For all algorithms, the dimension of the subspace (k) is
tuned within {72, ..., 112, 122}. for NTCoF-2D and NTCoF-
3D, the parameter ¢ is fixed as ¢ = 0.6 x k. We optimize the
parameter A for NTCoF, the parameter f for MTJSR, and the
subspace dimension for all algorithms using the 10-fold cross
validation procedure on the training set.

We report the mean accuracy of recognition, i.e. the per-
centage of agreements between the groundtruth classes and the
predicted classes. We also calculated the standard derivations
of those recognition results calculated from ten random splits
of the datasets.

Fig. 1 shows the convergence curves of NTCoF-3D and
NTCoF-2D algorithms on the CMU PIE dataset. The dimen-
sion of desired subspace is set to be k = 100. From the
curves, one can observe that both algorithms will converge
after about 2000 iterations. We implement the algorithms using
MATLAB 2008a and conduct the experiments on a computer
with Intel(R) Core(TM)2 Duo 2.66GHz CPU and 8GB RAM.

Tables II and III report the quantitative comparisons of
various face recognition algorithms on CMU PIE and YALE
datasets. From these results, we could obtain following obser-
vations. 1) The proposed NTCoF-2D and NTCoF-3D algo-
rithms usually achieve higher accuracies as compared to
various baseline algorithms over two datasets, while using
either NN or MTJSR classifiers. Particularly, our method is
much better than mCCA [15] although both utilize multi-
modal strategy. The advantages of NTCoF over mCCA come
from the nonnegative constraints and the proposed data
factorization formulation in the setting of muti-task learning.
2) The adopted MTISR classifier outperforms the traditional
NN classifier consistently in the previous work [42] and [44].
3) The algorithms NTCoF-2D and NTCoF-3D, that utilizes
three types of features, clearly outperform the algorithms that
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The data used here is from the CMU PIE dataset.
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Convergence curves of (a) NTCoF-2D and (b) NTCoF-3D. X-direction: iterations; Y-direction: objective function values of two methods (see Eq. 7).

TABLE 11
FACE RECOGNITION ACCURACIES ON CMU PIE DATASET. THE FIRST COLUMN INDICATES THE ALGORITHM TO EVALUATE AND THE
REMAINING COLUMNS INDICATE THE AVERAGE ACCURACIES (%) AND STANDARD DEVIATIONS (%, IN THE PARENTHESES)
OF THE RESULTS OBTAINED FROM TEN RANDOM SPLITS OF THE DATASETS

Features Intensity+Gradient Gradient+LBP Intensity+LBP Intensity+Gradient+LBP
Classifiers NN MTIJSR NN MTJSR NN MTJSR NN MTIJSR
PCA [41] 80.49(£1.38) | 81.39(£1.47) 81.23(£1.03) | 82.15(£1.51) 80.18(£1.21) 82.43(£1.69) 82.31(£0.84) | 84.57(£1.22)
NMF [24] 82.18(1+2.49) | 84.68(£2.26) 83.47(£2.13) | 84.35(£2.57) 83.31(£2.16) 85.26(+2.64) 85.48(£0.97) | 86.72(£1.04)
mCCA [15] 83.85(£2.53) | 84.26(£2.11) 84.17(£2.14) | 85.19(£2.39) 83.72(£2.58) 84.68(12.71) 85.68(+1.47) | 86.33(£2.48)
NTF [38] 85.93(£1.54) | 86.29(£2.11) 86.48(+2.09) | 87.41(£2.01) 86.48(+2.09) 87.41(£2.01) 87.53(£0.79) | 88.39(£0.96)
NTCoF-2D 87.54(£2.33) | 89.54(£2.30) 85.19(£2.09) | 88.31(£2.38) 87.68(+2.73) 88.27(1+2.59) 88.13(+1.32) | 89.75(£1.42)
NTCoF-3D 86.22(+2.43) | 86.49(£1.52) 86.51(£2.23) | 89.56(+1.63) 87.35(£2.01) 90.83(£1.60) 88.77(£0.53) | 89.32(£0.24)

TABLE III
FACE RECOGNITION ACCURACIES ON YALE DATASET

Features Intensity+Gradient Gradient+LBP Intensity+LBP Intensity+Gradient+LBP
Classifiers NN MTJSR NN MTJSR NN MTJSR NN MTJSR
PCA [41] 53.25(£2.45) | 55.47(£2.16) 54.19(£2.37) | 55.98(42.46) 54.37(£2.97) | 56.10(42.58) 57.15(£1.68) | 58.36(F1.74)
NMF [24] 57.47(£3.37) | 59.32(%3.27) 59.23(£3.45) | 60.15(%3.18) 58.15(£3.62) | 61.24(%3.47) 60.38(£2.19) | 60.97(11.69)
mCCA [15] 57.35(£2.49) | 58.92(42.03) 58.47(£2.34) | 59.90(42.13) 58.85(£2.61) | 60.12(42.98) 61.77(£1.31) | 62.49(F2.17)

NTF [38] 61.52(£2.60) | 62.87(1£2.05) 62.47(£2.75) | 62.58(%2.53) 61.28(£2.38) | 62.57(12.46) 63.02(£1.12) | 63.28(+1.31)
NTCoF-2D 64.25(£2.11) | 64.98(£1.13) 64.08(£2.27) | 63.18(£1.92) 63.65(£2.41) | 65.52(£2.00) 65.13(£1.11) | 66.32(£1.34)
NTCoF-3D 65.77(£1.70) | 67.59(41.80) 65.24(£1.85) | 67.32(+1.59) 65.19(£1.72) | 67.67(£1.62) 65.81(£2.34) | 68.23(+2.10)

utilizes only two features. This is due to the fact that utilizing
more complementary features could improve the robustness
of face recognition. We obtain consistent observations on
the benefits of feature combination, which is however not
consistent in [15], partially because we use the evaluation
strategy of multiple splits of the datasets that will reduce the
effects of uncertainties in each evaluation routine. These com-
parisons well demonstrate the effectiveness of our proposed
co-factorization algorithm.

B. Exp-II: Multi-Class Image Categorization

In this subsection, we apply the proposed NTCoF-2D
based classifiers for multi-class image categorization, and
compare them with various Multiple Kernel Learning (MKL)
methods [16], [32], [41] on Oxford Flower Datasets [32] and
Caltech 101 datasets [25]. As reported in the past literature,
MKL methods can achieve the state-of-the-art algorithms on
these datasets.

The Oxford Flower dataset [32] consists of 8,189 images
divided into 102 flower categories. Each category con-
sists of 40-250 images. The categorization is carried out

based on four features, HSV, HOG, SIFTint and SIFTbdy.
The dataset is divided into a training set, a validation set
and a testing set. The training set and validation set each
consist of 10 images per category. The test set consists of the
remaining 6,149 images (minimum 20 per class). A predefined
training/validation/test split and the above features are publicly
available on the database website.> We use the predefined
splits as aforementioned for training and parameter selection.
The ten-fold cross-validation procedure is conducted on the
validation set. Accuracy is first measured per class and then
averaged over all categories. For comparisons, we implement
the NTF 4+ NN and NTF + MTIJSR algorithms introduced in
Exp-I. The accuracies by the proposed NTCoF-2D + MTIJSR
algorithm and the baselines methods are reported in Table IV.
We also list the results of the MKL method [32] for compar-
isons. We can observe that our algorithms are slightly better
than the MKL method and much better than two baselines.
The Caltech101 data set [25] contains images of 101
categories of objects plus a background class. Following the
standard experimental protocol [25], 15 images per category

2http://www.robots.ox.ac.uk/~vgg/data/ﬂowers/ 102/index.html
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TABLE IV
ACCURACIES COMPARISON ON THE OXFORD FLOWERS-102 DATASET

| Algorithms [Accuracy(%))
NTF+NN 60.8
NTF+MTIJSR 67.3
MKL [33] 72.8
NTCoF+MTIJSR 73.3
TABLE V

ACCURACIES COMPARISON ON THE CALTECH 101 DATASET

| Algorithms [ Accuracy(%) |
NTF+NN 52.6(£0.9)
NTF+MTIJISR 54.8(£1.1)
MKL [42] 70.0(£1.0)
LPBoost [16] 70.7(£0.4)
NTCoF+MTIJSR 71.5(£0.6)

are selected for training and 15 images are selected for
testing. Evaluations includes all 102 classes averaged over
three random training/test splits, and the performance is mea-
sured as the mean accuracy per class. We extract from images
four features, including geometric Blur [3], Phow-gray [5],
color [23] and SSIM [38], among which the later three are
represented in spatial pyramid with two levels. Table V reports
the accuracies of various methods and the results from past
literature [16] and [41]. Again, we can observe that our
algorithms perform comparably to the state-of-the-art results
achieved by MKL.

C. Exp-1II: Multi-Label Image Annotation

The public dataset COREL5K [13] is used for this experi-
ment. There are 5,000 images from 374 class labels. We use
the standard partition strategy as in [13], 4,500 images are
used for training and the rest images are used for testing.

We apply the proposed NTCoF-2D method for multi-
label image annotation and compare it with various popular
algorithms, including the co-occurrence model (co-occ) [30],
the machine translation model (MT) [12], the cross-media
relevance model (CMRM) [20], the continuous relevance
model (CRM) [22], CRM with rectangular regions as input
(CRM-Rect) [14], the multiple bernoulli relevance model
(MBRM) [14] and the supervised multiclass labeling model
(SML) [8]. For SML, we use the results corresponding to the
best parameters in [8]. All the results of above baselines are
directly from the original papers.

In implementation, we extract both global and local features
commonly used for image categorization. The global image
descriptor used here is the GIST feature [34], and the local
descriptors include the SIFT feature [29] as well as the robust
hue descriptor [43], extracted densely on a multi-scale grid
or for Harris-Laplacian interest points. Each local feature
descriptor is first extracted and then quantized using K-Means
on training samples. Images are then represented as a Bag-
of-Word histogram. These results in 5 distinct descriptors,
namely one Gist descriptor and four bag-of-features descrip-
tors (“Dense”+“SIFT”, “Harris”+“SIFT”, “Dense”+“Hue”,
“Harris”+“Hue”). Each descriptor is normalized to be a
{>-norm unit and preprocessed by Principal Component
Analysis (PCA) so the feature dimension is reduced to
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field, horses, mare, foals

cow, tree, bulls,
elk, forest

field, horses, mare,

mountain, horizon glass, foals

sky, clouds, plane,
horns, ground

sky, monk, mountain, ‘

people, log

tree, plane, herd,
ground, zebra

tree, house, wall,
barn, meadow

dress, people, log,
close-up, head

flowers, house, plane,
garden, buildings

Fig. 2. Image annotation results on CORELS5K dataset [13]. For each image,
the labels predicted by NTCoF-2D algorithm are shown at the bottom line,
the ground-truth labels are shown at the top line.

be 256. In order to evaluate the benefits brought by dif-
ferent feature combinations, we implement two versions of
NTCoF-2D for this task: 1) NTCoF-2D (M=3), that uses
GIST feature, “Dense”+“SIFT” feature and “Harris”+“SIFT”
feature, and 2) NTCoF-2D (M = 5) that uses all five
features. In the low-dimensional feature space obtained by
NTCoF-2D, we utilize the MTJSR classifier or the multi-
label K-Nearest Neighborhood (MLKNN) [50] classifier to
propagate the image labels annotated for training images to
the test images. We choose to use NTCoF-2D, rather than
NTCoF-3D, since we try to utilize the same image descriptors
(all in the form of vectors) as in other multi-label image
annotations algorithms.

There are several free parameters, including the desired
dimension of subspace k and the parameters A for NTCoF, the
tuning parameter § for MTJSR, and the number of neighbors
K for MLKNN classifier. We choose the parameter values
using a 10-fold cross validation procedure on the training set.
For this dataset, they are fixed to be k = 64, 4 = 0.001,
£ =0.03, K =20.

We use two standard metrics, precision and recall rates.
As in previous works [8], [14], [22], we first compute the
precision or recall for each label and then average over all
labels. For each algorithm, we list the number of labels with
nonzero recalls, which provides an indication of how many
labels the system has effectively learned. All comparisons are
conducted for the 260 labels appeared in test set. In addition,
we also evaluate the top 49 annotations to make a direct
comparison with the works in [12], [14], [20], and [22].

Table VI reports the comparison results, where the winner
of each comparison term (split by double vertical lines) is
indicated with bold font. For CO-occ [30] and SML [8],
there are no statistics for the top 49 keywords in the
corresponding papers. From the results, we can draw following
observations. First, NTCoF-2D achieves the best performances
among all the evaluated algorithms. Particularly, we obtain a
gain of 3 percents in terms of recall rate and 5 percents in
terms of precision rate, as compared to SML [8], which is one
of the most popular and effective image annotation algorithms.
Second, the algorithm NTCoF-2D (M = 5) that uses five
types of feature descriptors clearly outperform the algorithm
NTCoF-2D (M = 3) that uses three types of features in terms
of both recall and precision rates while utilizing NN or MTJSR
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TABLE VI
ACCURACIES COMPARISON OF VARIOUS IMAGE ANNOTATION ALGORITHMS ON THE CORELSK DATASET

Results on all 260 words

Algorithms H #Words (Recall> 0) l

I Results on 49 best words [
[ |

[ Recall i Precision Recall i Precision
Co-occ [31] 19 0.02 0.03
MT [12] 49 0.04 0.06 0.34 0.20
CMRM [20] 66 0.09 0.10 0.48 0.40
CRM [22] 107 0.19 0.16 0.70 0.59
CRM-Rect [14] 119 0.23 0.22 0.75 0.72
MBRM [14] 122 0.25 0.24 0.78 0.74
SML 8] 137 029 023
- MLKNN MTISR MLKNN MTIJSR MLKNN MTIJSR MLKNN MTIJSR MLKNN MTIJSR
NTCoF-2D (M=3) 129 137 0.22 0.27 0.20 0.23 0.72 0.76 0.70 0.76
NTCoF-2D (M=5) 135 142 0.25 0.31 0.24 0.28 0.76 0.85 0.75 0.80

classifier. Third, integrating MTJSR classifier with NTCoF-2D
achieve better annotation results than those by NN classifier,
which well demonstrates the effectiveness of the multi-task
joint sparse representation formulation.

Fig. 2 shows several exemplar annotations (at the bottom of
each image) produced by NTCoF-2D+MTJSR. Each image
contains at least one mismatched label compared with the
ground-truth labels (at the top of the image). The images with
completely matched annotations are not listed. We can observe
that the labels estimated by our algorithm but not contained
in the ground-truth annotations are still frequently plausible.

VI. CONCLUSIONS

In this paper, we proposed a novel nonnegative data
factorization algorithm, nonnegative tensor co-factorization
(NTCoF), for multi-modal learning problems. A quadratic
block-wise convex function was defined and an efficient
multiplicative update method was developed. NTCoF provides
a general framework for utilizing multiple representations to
obtain discriminative dimensionality-reduced representations.
We applied NTCoF for face recognition, multi-class image
categorization and multi-label image annotation, and obtained
superiorities over other subspace learning methods or the state-
of-the-art methods on several public benchmark databases.

APPENDIX

A. Preliminaries

We first introduce the concept of auxiliary function and the
lemmas which shall be used for the deduction of the unified
solution.

Definition : Function G(A, A') is an auxiliary function for
Sfunction F(A) if the following conditions are satisfied:

G(A,A) > F(A), G(A,A)=F(A)NA,A" (26)
From the above definition, we have the following lemma
with proof omitted [24].
Lemma 3.1: If G is an auxiliary function, then F is non-
increasing under the update
ATl = arg mAin G(A, AD, (27)

where ¢ means the /" iteration.

B. Convergence of the Update Rule Eq. (14)

Letting U = U, we denote F; ; as the part of F(U) relevant
to U;;, and we have,

K
F,(U) = > (A'UB' + C)y;, (28)
=1
K
F(U) = D (Ahi(BY) ;. (29)
=1
The auxiliary function of Fj; is then designed as:
G(Uij, Uj;) = Fi; (U} + F;(U[) (Ui = U}))
K I+t pl+ =77t pl— +
—(ATU'B"T+ ATU'B'")+CT)jj
_’_(2171( - ) )z] (Uij N Uf-)z.
2U;; J
(30)

Lemma A.1: G(U;j, Ul.’j) is the auxiliary function of Fj;.
Proof:  Since G(U;j, Uij) = F;j(U;j), we need only to
show that G(Uij, Ul-tj) > F(Uij).
First, we can obtain the Taylor series expansion of Fj;,
which is quadratic with respect to U;;, as follows,

Fij(Uyj) = F; (U} + F;(U})(Uij — U;)
S FG U Wy~ U (1)
Then, since,
(AMU'B"™ + AT U'B')y = UL (AN aa(BYiw,  (32)

we have the following inequality

(ZIKZI(AHUIBH_}_AI— U’Bl—)+C+),-j
Ul

K

>>" (A (B
=1

Thus, G(U;;, Uitj) > F;; (U;j) holds. |
Lemma A.2: Eqn. (12) could be obtained by minimizing the

auxiliary function G(Uj;, Ul.’j) with respect to Uj;.

oG (U;j,U!.
Proof: Let 06, Uiy

U, =0, we have,

(ZIK=1 (Al+UtBl+ + Alfthlf) + C+)ij w

0
UL

Ul

+F(UL).
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Then we can obtain the iterative update rule for U as,

t+1 t
Uij <~ Ul-j X

[ZIKZI(AH»UtBlf + AlfUtBH») + Ci]ij
[>K (AU B + AFU'BI-) + CH);;

and the lemma is proved. ]
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