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Single-Trial EMG Analysis Using
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Abstract— In recent years, electromyography (EMG)-
based practical myoelectric interfaces have been developed
to improve the quality of daily life for people with physical
disabilities. With these interfaces, it is very important to
decode a user’s movement intention, to properly control
the external devices. However, improving the performance
of these interfaces is difficult due to the high variations in
the EMG signal patterns caused by intra-user variability.
Therefore, this paper proposes a novel subject-transfer
framework for decoding hand movements, which is robust
in terms of intra-user variability. In the proposed framework,
supportive convolutional neural network (CNN) classifiers,
which are pre-trained using the EMG data of several sub-
jects, are selected and fine-tuned for the target subject via
single-trial analysis. Then, the target subject’s hand move-
ments are classified by voting the outputs of the supportive
CNN classifiers. The feasibility of the proposed framework
is validated with NinaPro databases 2 and 3, which com-
prise 49 hand movements of 40 healthy and 11 amputee
subjects, respectively. The experimental results indicate
that, when compared to the self-decoding framework, which
uses only the target subject’s data, the proposed framework
can successfully decode hand movements with improved
performance in both healthy and amputee subjects. From
the experimental results, the proposed subject-transfer
framework can be seen to represent a useful tool for
EMG-based practical myoelectric interfaces controlling
external devices.

Index Terms— Subject-transfer framework, myoelec-
tric interfaces, electromyography, convolutional neural
networks.
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I. INTRODUCTION

RECENT advances in pattern recognition and machine
learning techniques within the field of signal processing

have allowed a user’s movement intentions to be recognized
through analysis of their bio-signals. In particular, electromyo-
graphy (EMG)-based intention recognition, also known as
myoelectric interface, has become a useful technology due
to its ease of use and noninvasiveness [1], [2]. Myoelectric
interfaces have the advantage of being able to interact with
both the user and external devices. From this, rehabilitation
devices controlled by myoelectric interfaces have emerged as
a new technology, one that allows a more efficient interaction
with the environment for both able-bodied and disabled people
as they perform everyday activities. Examples of these external
devices include arm prosthetics [3]–[8], teleoperation robots
for extreme environments [9] and gaming interfaces [10].
These techniques are capable of recreating the natural intention
of actual movements.

The overall architecture of the myoelectric interface for a
control device is illustrated in Fig. 1. The acquired EMG
signals are preprocessed to remove noise or artifacts. Then,
suitable features are extracted and classified using pattern
recognition and machine learning techniques. Based on the
output of the classifier, the user’s movement intentions are
recognized for interfacing with external devices. Various fea-
tures within the time and frequency domains as well as
numerous types of optimal classifier have been extensively
investigated in attempts to improve the performance of move-
ment intention classification techniques, with varying degrees
of success [11]–[15].

However, most of the research efforts looking at advanc-
ing the practical applications of myoelectric control have
revealed a gap between the research findings and clinically
viable implementations [8]. This gap is mainly formed by the
intra-user variability problem present in EMG characteristics.
Intra-user variability means that the EMG characteristics show
a nonstationary distribution over long-term usage, caused by
physiological changes. It is attributable to several factors,
such as electrode displacement, signal crosstalk, and the EMG
signal recording environment system [15], [16]. Variations
in EMG signal distributions can occur even between trials
for the same subject. This variation can limit the long-term
uses of EMG-based external device control. The classifier can
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Fig. 1. Overview of myoelectric interface for control devices, using
pattern recognition and machine learning.

be trained by asking users to repeat a calibration protocol,
though this is inefficient and inconvenient, as the number of
movements required of the user is increased considerably, even
when the calibration time is only few minutes.

Various approaches based on pattern recognition and
machine learning techniques have been applied to the task of
eliminating the burden of calibration protocols. Notably, a self-
adaptation system that can recalibrate using only the predicted
intention of the user has been developed, to enhance the
robustness of EMG-based user intention recognition [17]–[21].
Sensinger et al. [17] proposed supervised and unsupervised
adaptive paradigms, to expand the training dataset by including
online data along with their predictions. The experimental
results showed that all the adaptative paradigms were able to
reduce the error margins present in the non-adapting classifier.
However, because of this additional data, the performance of
the classifier could, in fact, degrade. Obtaining the adaptive
paradigm which best reduces this degradation remains an open
question. Tommasi et al. [18] proposed an adaptation approach
based on multiple pre-trained models, which utilized a support
vector machine (SVM). However, the proposed method was
evaluated using only 7 classes of small hand movement.
Therefore, experiments with more classes are required before
control of various external devices is possible. Matsubara and
Morimoto [19] devised a bilinear model of EMG signals con-
sisting of user- and motion-dependent features. They separated
the user-dependent EMG signals from the signals associated
with movements, using a training step. A multiclass SVM was
then trained with the motion-dependent data. Subsequently,
the user-dependent features were extracted by providing new
data, which was then inputted to the existing model after
observing one trained movement modeled by the SVM. How-
ever, the dimensions of the user- and motion-dependent fea-
tures were selected experimentally, something which remains
a persistent limitation. Liu et al. [20], [21] used an adaptive
linear discriminant analysis approach to compensate for the
non-stationarity in EMG signals. The pre-trained classifiers
were adapted using a new short-labeled dataset that was

collected daily. They demonstrated an improved accuracy over
the non-adapting classifier, but used the prediction results
directly, which may have included data that was incorrectly
classified.

Recently, the convolutional neural network (CNN) has
emerged as one of the most powerful machine learn-
ing approaches [22]. Following the advances in computing
power obtained via the development of graphics process-
ing units (GPUs), the CNN has now been applied to
the recognition of user intention in several myoelectric
interface studies [23], [24]. Zhai et al. [24] proposed a
CNN-based framework for hand movement classification
based on reduced-dimension EMG spectrograms using prin-
cipal component analysis (PCA). In addition, by combining a
CNN with a median-based label updating mechanism, the pro-
posed framework provided an effective self-recalibration pro-
cedure to maintain stable performance.

In this study, we aim to develop a CNN-based subject-
transfer framework that can improve the classification accuracy
for hand movements within non-stationary EMG signals. The
main hypothesis of the subject-transfer strategy is that the
characteristic patterns of the EMG signal between the target
subject and other subjects may be similar for the same
task. Therefore, the data of other subjects can help in the
intention recognition of the target subject. This hypothesis
has shown great success in another field of research, nam-
ely electroencephalography-based brain-computer interface
studies [25]–[27].

In the proposed subject-transfer framework, the supportive
CNN classifier for other subjects’ EMG data is used instead of
using other subjects’ data directly. First, effective pre-trained
CNN classifiers are selected as supportive classifiers using
the first trial of the target subject. Then, the selected CNN
classifiers are fine-tuned from the first trial of the target
subject. Finally, the classification for subsequent trials of the
target subject is determined by voting the outputs of the
fine-tuned supportive CNN classifiers. To validate the pro-
posed framework, we compare its classification performances
with the self-decoding framework using the time domain and
auto-regressive (TDAR) features and SVM which were widely
used in EMG studies, and the self-decoding framework with
CNN [24] which has shown good performance on the NinaPro
databases 2 and 3 [28], [29].

The remainder of this paper is organized as follows.
Section II presents the benchmark database and details the pro-
posed subject-framework. Section III presents the experimental
results, which are then discussed, along with the proposed
framework, in Section IV. Finally, our conclusions and future
plans are presented in Section V.

II. MATERIALS AND METHODS

A. Benchmark Database

In this study, the NinaPro databases 2 and 3, which contain
tasks relating to upper-limb movement, are used for the experi-
ments [28], [29]. NinaPro is a publicly accessible database that
has been previously used in myoelectric interfaces for decod-
ing hand movements. In database 2 (DB2), the EMG data
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Fig. 2. The 25 principal components (PCs) were extracted and reshaped into a 2D matrix, then rearranged in such a way that the most significant
PC sits at the center of the matrix. Then, 800 filters of size 4× 4 convolved with the PCs, and fully connected the feature maps for classification.

from 40 healthy subjects (12 females, 6 left handed and aged
29.9 ± 3.4 years)who performed 49 movements (8 isometric
and isotonic hand configurations, 9 basic wrist movements,
23 grasping and functional movements and 9 force patterns)
relevant to the activities of daily living are present in the
database. Database 3 (DB3) comprises data from 11 transradial
amputees with disabilities of the arm, shoulder, and hand, con-
taining a score ranging from 1.67 to 86.67 (on a scale of 0-100)
for each subject’s ability to perform the same hand movements
as in DB2 [24]. In the experimental set-up, each movement
was repeated 6 times with a 3-s rest period between. The EMG
signal was recorded using 12 electrodes of a Delsys Trigno
Wireless system, which provides a sampling rate of 2,000 Hz.
Then, the recorded signal was filtered with a Hampel filter to
remove the 50 Hz power line interference. The electrodes were
positioned to combine a dense sampling approach [30]–[32]
with a precise anatomical positioning strategy [2], [32]. Eight
electrodes were positioned around the forearm at the height
of the radiohumeral joint, a constant distance from each other.
Two electrodes were placed on the main activity spots of the
flexor and extensor digitorum superficialis [29]. The last two
electrodes were placed on the main activity spots of the biceps
and triceps brachii. More details about the acquisition setup
are provided in the official database [28].

B. Data Preprocessing

The data preprocessing followed the method used in the
studies already published [24], [33]. The EMG signals were
sectioned into 200-ms (400 samples) segments with a 100-ms
(200 samples) overlap. Because the delay is less than 300 ms,
it is considered sufficient for continuous classification in
real-world applications [34]. Additionally, a number of seg-
ments for all movement types (including rest) were balanced in
this study to minimize the bias in accuracy calculations [24].
Then, each segment (with each channel) is processed inde-
pendently for extraction of the spectrogram and for normal-
ization. The spectrogram of each segment is extracted using
a 256-point fast Fourier transform with a Hamming window
and 184-point overlap. Hence, the spectrogram is calculated
at 129 different frequencies (0-1,000 Hz) with three time bins.
Only the first 95 frequencies of the spectrogram are used,

as the major energy of the EMG is observed within a frequency
range of 0-700 Hz. Therefore, the size of each spectrogram is
95× 3 × 12 (frequency× time bins× channels). Then, before
performing the PCA, the spectrograms are converted into a
range of 0-1 via maximum-minimum normalization [33].

To apply PCA, the normalized spectrograms are vectorized
at the channel to improve computational efficiency and per-
formance. PCA is applied to the spectrogram to reduce the
dimensionality whilst retaining the useful information from the
EMG signals. Then, because the first 100-500 principal com-
ponents (PCs) are sufficient to achieve good performance [33],
only the scores of the first 25 PCs of each channel are used
as an input to the classifier. As a result, each spectrogram is
reduced to a dimension of 25 × 12 (PCs × channels).

C. CNN Architecture

Fig. 2 shows a schematic for the CNN architecture used
in the proposed framework. The CNN is composed of the
following four parts. The first part is a convolutional layer
with 800 filters of size 4 × 4. The second part is a rectified
linear unit (ReLU), which acts as a non-linear activation
function. The ReLU is used to avoid the vanishing gradient
problem [35]. The third part contains two fully connected
layers with a size of 800 (dropout rate of 0.5). The fourth part
is a softmax loss layer used for classification. The softmax
loss layer computes the cost function using the normalized
exponential function. It also outputs the probabilities of all
the movement types considered in the current prediction.
After several tests, the CNN was trained using a stochastic
gradient descent method with a momentum of 0.9; the learning
rate was set to 0.001; and the batch size was fixed at 256.
An open-source MATLAB toolbox (MatConvNet) was used
to implement the CNN classifier [36]. Computations using the
CNN were performed with the NVIDIA CUDA Deep Neural
Network library, which was trained on two NVIDIA Titan Xp
GPUs [37].

D. Subject-Transfer Framework

Fig. 3 shows a schematic for our subject-transfer framework.
This framework is proposed for applying existing CNN models
from other subjects to a target subject. The main hypothesis
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Fig. 3. Block diagram of the proposed subject-transfer framework. The supportive CNN classifiers are selected using the first trial of the target
subject. Then, the supportive CNN classifiers are fine-tuned for to classify a subsequent trial the target subject.

of the proposed framework is that the characteristic patterns
of the EMG signal between the target subject and the other
subjects may be similar for the same tasks. Therefore, when
sufficient pre-trained CNN classifiers from other subjects are
available, it is possible to achieve high decoding performance
by transferring multiple existing CNN models to the target
subject. In addition, the decoding performance obtained using
the subject-transfer approach could be high compared to that
obtained using a self-decoding model trained using only EMG
data from the first trial of the target subject.

1) Source CNN Classifiers: First, the source CNN classi-
fiers are pre-trained using the EMG data of all the trials
(6 repetitions in each hand movement) from all other subjects
(excluding the target subject).

2) Supportive CNN Classifiers Selection: The pre-trained
source CNN classifiers are ranked according to the classi-
fication accuracy for the first trial of the target subject’s
hand movements. Then, several CNN classifiers that show
better performance are selected as the supportive CNN clas-
sifiers for decoding the hand movements of the target subject
(10 supportive CNN classifiers were used in our experiments).

3) Fine-Turning the CNN Classifiers: All the selected sup-
portive CNN classifiers are fine-tuned using the first trial of
the target subject’s hand movements, to adapt them to the
characteristics of the target subject.

4) Classification for Target Subject: For classifying the new
trial (each test trial) of the target subject, all the fine-tuned
supportive CNN classifiers decode the new trial and assign
it to one of the hand movements. Then, the outputs of the
fine-tuned classifiers are voted for final classification. Assume
that Lnew denotes the predicted label for a new trial of the
target subject. The label is predicted based on the output
that was most commonly classified by the supportive CNN
classifiers.

Lnew ← mode(L1, L2, . . . , Li−1, Li ) (1)

where Li denode the output of i th supportive CNN classifiers
(in our experiments, i = 10).

E. Performance Evaluation

1) Classification Accuracy: The classification accuracy is
defined as the ratio between the number of correctly clas-
sified segments and the total number of testing segments,
in each trial. The accuracy, Acck for the target subject k is

Fig. 4. Averaged classification accuracy across different numbers
of supportive CNN classifiers in the randomly selected 20 healthy
subjects (DB2).

calculated as,

Acck = 1

M

M∑
n=1

[
# o f correct segments

# of total segments

]
n

(2)

where M is the total number of movement types. The
class-specific accuracy is understood to be a preferred metric
over global accuracy, for quantifying the performance of the
classifier [38], [39].

2) Statistical Analysis: For better quantitative compari-
son between the proposed subject-transfer and self-decoding
frameworks, we performed statistical analysis via the t-test and
the Wilcoxon rank sum test. In each figure, ∗ means p < 0.05
and ∗∗ means p < 0.01. Unless specified, all the results are
presented as p < 0.05.

III. EXPERIMENTAL RESULTS

A. Performance Evaluation With Healthy Subjects (DB2)

To investigate the effects of the number of supportive CNN
classifiers employed, we first implemented an experiment that
could confirm the accuracies in terms of this number. In this
experiment, 1-39 CNN classifiers trained by other subjects
(1-39 subjects excluding the target subject) were used as
supportive classifiers. Fig. 4 shows the average accuracy of
a test trial of 20 subjects who were selected randomly from
DB2. Of the six repetitive hand movement trials administered
to each subject, the first was used for selecting the supportive



98 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 1, JANUARY 2020

Fig. 5. Classification restults within the self-decoding (TDAR-SVM),
self-decoding (CNN), subject-transfer (Raw data), and subject-transfer
(CNNs) frameworks in the DB2 (∗ means p < 0.05 and ∗∗ means
p < 0.01).

CNN classifiers and fine-tuning those selected, and the second
trial was used as the test trial. Consequently, using 10 support-
ive classifiers showed good performance, while using more
than 10 classifiers did not lead to any significant improve-
ment. Therefore, for the proposed subject-transfer framework,
we used 10 CNN classifiers as supportive classifiers in all
experiments for healthy (DB2) and amputee subjects (DB3).

Fig. 5 shows the classification results obtained with
two self-decoding frameworks and the two subject-transfer
frameworks:
• Self-decoding (TDAR-SVM): In general, the TDAR fea-

tures are widely used in the EMG analysis [15]. In this
framework, the mean absolute value, zero crossings, slope
sign change, waveform length, and auto-regressive feature
were used as the TDAR features. Then, the SVM was
used as a classifier. The SVM classifier was trained only
from the TDAR features of the first trial (repetition 1) of
the target subject’s hand movements.

• Self-decoding (CNN): The self-decoding framework was
proposed in [24] by Zhai et al. In this framework, a ran-
domly initialized CNN classifier was also trained only by
the first trial of the target subject’s hand movements.

• Subject-transfer (Raw data): In this framework,
subject-transferal took as raw data the selected
supportive subjects instead of the trained CNN classifier.
This framework was implemented for a performance
comparison between the use of raw data from the
supportive subjects and that of a CNN trained with the
data of the supportive subjects. In the subject-transfer
(Raw data) framework, a CNN classifier was trained by
all the raw data from 10 subjects who were selected as
supportive subjects. The trained CNN classifier was then
fine-tuned to the first trial of the target subject.

• Subject-transfer (CNNs): In the proposed framework,
10 supportive CNN classifiers, which were pre-trained
by each supportive subject’s raw data, were selected and
fine-tuned to the first trial of the target subject.

Fig. 6. Classification restults of the self-decoding (CNN) and
subject-transfer framework (CNNs) within two and three training trials.

As shown in Fig. 5, the proposed framework (subject-
transfer (CNNs)) exhibits the highest accuracy for each test
trial (repetitions 2-6). The averaged accuracies (50 classes)
showed 29.32%, 49.76%, 49.73%, and 52.52%. The proposed
framework shows a substantial performance improvement
of 23.2% than the self-decoding (TDAR-SVM) framework.
The proposed framework also shows performance improve-
ments about 3% over compared to the self-decoding (CNN)
and the subject-transfer (Raw data) frameworks. Further-
more, the statistical analysis revealed statistical significances
between the proposed framework and other frameworks. Sub-
sequently, using the CNN classifier, which was pre-trained
using other subjects’ data, yielded a better performance than
that of using the raw data of other subjects. Based on these
experimental results, we can conclude that the proposed frame-
work can help improve the decoding accuracy of the hand
movements in healthy subjects.

Fig. 6 shows the classification results with two training trials
(repetitions 1-2) and three training trials (repetitions 1-3).
In practice it would not be difficult to implement two or
three repetitions. Consequently, the self-decoding (CNN) and
proposed subject-transfer (CNNs) frameworks were imple-
mented with two and three training trials in these experi-
ments, to investigate the decoding performance. As a result,
the proposed framework performs better in each training set.
These results demonstrate that the proposed framework is more
effective than the self-decoding framework, even for two or
more training trial sets.

Fig. 7 shows the decoding accuracies within various elec-
trode sets, to validate the effectiveness of the proposed
subject-transfer framework (CNNs). In practice it is difficult to
attach the electrodes to general and specific places, such as the
main activity spots of extensor digitorum supercialis, depend-
ing on the user’s type. Therefore, to consider the various user
types we also investigated the decoding performance within
three electrode sets. In the NinaPro dataset, the electrodes were
attached at generic placements (eight around the forearm) and
specific placements (the two main activity spots of the exor and
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Fig. 7. Classification results with three electrode sets (eight around
the forearm, two at the two main activity spots of the exor and extensor
digitorum supercialis, and two at the two main activity spots of the biceps
and triceps brachii).

extensor digitorum supercialis, and the 2 main activity spots
of the biceps and triceps brachii). Therefore, the electrode sets
comprised the following:
• 8 electrodes: 8 electrodes around the forearm.
• 10 electrodes: The 8 electrodes set plus the 2 main activity

spots of exor and extensor digitorum supercialis.
• 12 electrodes: The 10 electrodes set plus the 2 main

activity spots of the biceps and triceps brachii.
In Fig. 7, the proposed subject-transfer framework (CNNs)

shows better performance in all electrode sets. The results were
calculated as the average of all the test trials (repetitions 2-6 in
all healthy subjects). Based on these experimental results,
we confirmed that the accuracies of hand movement decoding
methods are higher when a higher number of electrodes are
attached. Furthermore, we can conclude that the proposed
subject-transfer framework (CNNs) has better performance in
all electrode sets.

B. Performance Evaluation With Amputated
Subjects (DB3)

We also tested the proposed subject-transfer frame-
work (CNNs) on the amputee subjects in NinaPro data-
base 3 (DB3). In the aforementioned experiments with
DB2, all subjects were able-bodied, implying that they are
far more anatomically similar to each another than to the
amputee subjects. Because of the similarity, the proposed
subject-transfer framework may show better performances
than the self-decoding framework. Therefore, the objective
of these additional experiments was to confirm that the pro-
posed framework shows better performance than self-decoding
frameworks, even for amputee subjects.

Fig. 8 shows the classification results with two self-decoding
frameworks and three subject-transfer frameworks:
• Self-decoding (TDAR-SVM) and Self-decoding (CNN):

The same framework as previously mentioned for DB2.
• Subject-transfer (Healthy): In this framework, the subject-

transferal used supportive CNN classifiers from only
healthy subjects. This framework was implemented to

confirm that the CNN classifiers from healthy subjects
can be used for amputee subjects.

• Subject-transfer (Amputee): In this framework,
the subject-transferal used supportive CNN classifiers
from only amputee subjects.

• Subject-transfer (All): In this framework, subject-
transferal was conducted using supportive CNN classifiers
from healthy and amputee subjects. The objective of this
framework was to confirm how many CNN classifiers
from healthy subjects to select when classifying hand
movement decoding for amputee subjects.

For Fig. 8, we omitted two amputee subjects (Sub7 and
Sub8) from the database, as they had only 10 electrodes owing
to insufficient space on their stump. The results show that
the subject-transfer framework has better performance than
other frameworks. Specifically, the subject-transfer (Amputee)
framework shows the best performance for each test trial.
These results prove that the subject-transfer strategy can help
decode the hand movements of amputee subjects via EMG
signals.

Fig. 9 shows the decoding accuracies within the three
electrode sets that were previously used for DB2. In healthy
subjects, we are generally able to attach the EMG electrodes
to their standard positions; however, this may not be possi-
ble for an amputee. Therefore, we investigated the perfor-
mances of the proposed subject-transfer framework within
three electrode sets for the amputee subjects. Because it is
very difficult to attach the electrode to the same place for
each amputee subject, we wanted to explore the possibility
of solving these electrode placement issues. The results were
calculated as the average of all test trials (repetitions 2-6 in all
amputee subjects), similar to DB2. In the results, the proposed
subject-transfer framework (CNNs) shows better performance
in each electrode set than the self-decoding framework (CNN),
even with amputee subjects. Based on these results, we confirm
that the proposed framework can help amputee subjects despite
the issue of electrode placement.

IV. DISCUSSIONS

A. Decoding of Hand Movements With the
Subject-Transferring

In our experiments, we applied a subject-transferal method
to improve the decoding accuracy for the hand movements
of healthy and amputee subjects. In Fig 5, the averaged
classification results show that the proposed subject-transfer
framework (CNNs) can classify hand movements more effec-
tively in each trial (DB2). Fig. 10 illustrates in detail the differ-
ences in classification performance between the self-decoding
and subject-transfer frameworks for all subjects. The largest
difference in each test trial was observed in Sub35 with 6.77%,
and the smallest difference was observed in Sub10 with 0.03%.
These results mean that the proposed method might not be
effective for some subjects, but subject-transferal can help to
improve accuracy in general. Fig. 11 also shows the same
results for the amputee subjects (DB3) with 10 electrode
sets. The largest difference in each test trial was observed in
Sub3 with 6.68%,and the smallest difference was observed in
Sub10 with 0.66%.
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Fig. 8. Classification results within the two types of self-decoding (TDAR-SVM and CNN) and three types (healthy, amputee, and all) of subject-transfer
framework (CNNs). In each subject-transfer framework, supportive subjects were selected in healthy subjects only, amputee subjects only and all
subjects, respectively.

Fig. 9. Classification results with three electrode sets (same sets as
in DB2). For the classification accuracy within the 12 electrode sets,
only 9 subjects’ data was used because Sub7 and Sub8 attached only
10 EMG electrodes.

Based on these results, we conclude that the proposed
subject-transfer framework did not always improve the accu-
racy for all subjects, including amputee subjects. We also
concluded that additional experiments are required to address
this issue, and these will be conducted with more subjects
(healthy and amputee) in future work. In this study, we focused
on the validation of the effectiveness of the proposed frame-
work. Therefore, the scope was limited to offline data and
experiment. Additionally, the EMG data in Ninapro dataset
was collected ideally within a conditioned environment. This
is a limitation of our experiments. For an online scenario,
the proposed framework has to be validated for effectiveness
in real-world environments.

B. Supportive CNN Classifiers for the Target Subjects

Regarding the subject-transfer approach, recent work [40]
showed that subject-transferal is not effective for healthy
subjects. Specifically, the experimental results showed that the

subject-transfer method can be ineffective, via hyper-parameter
optimization of the SVM classifier. However, more experi-
ments are required to confirm the ineffectiveness, because the
experiments were conducted using only the SVM classifier.
Additionally, experiments validating effectiveness with healthy
subjects were not conducted in this study because the CNN
classifier showed better decoding performance than the SVM
classifier in recent work [24]. However, to be clear about this
issue, we plan to analyze the effectiveness of the proposed
subject-transfer framework for healthy subjects via another
database.

Interestingly, in Fig. 8, the classification results for the
‘Subject-transfer (Healthy)’ and ‘Subject-transfer (All)’ frame-
work were almost matched in every test trial. Therefore,
we investigated the selected supportive CNN classifiers in the
‘Subject-transfer (All)’ framework. Fig. 12 shows the selected
supportive CNN classifiers for hand movement decoding for
the amputee subjects. The results show that the supportive
CNN classifiers for amputee subjects were almost always
selected from healthy subjects. Consequently, it can be inferred
that the classification results were calculated to be similar in
every test trial because the supportive CNN classifiers were
primarily selected from the healthy subjects.

In fact, the highest decoding performance was exhibited
when the supportive subjects were selected only from the
amputee set, as shown in Fig. 8. This could imply that an
incorrect supportive CNN classifier (from the healthy subject
group) is selected during the ‘Supportive CNN classifiers
selection’ step shown in Fig. 3. In the proposed framework,
the supportive CNN classifiers were selected using only the
classification results of the target subject’s first trial, without
using any advanced selection method. Therefore, in future
work, we will apply the advanced selection method (such as
the multiple distance measurement-based selection of [27]) to
our subject-transfer framework, to solve the selection issue.

C. Self-Recalibration With Subject-Transferring

Recently, an efficient self-recalibration method was devel-
oped for real-world prosthetic applications [24]. To validate the
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Fig. 10. The difference of classification accuracy in each healthy subject (DB2) between the proposed framework and the self-decoding framework
(p < 0.05).

Fig. 11. The difference of classification accuracy in each amputee
subject (DB3) between the proposed framework and the self-decoding
framework (p < 0.05).

effectiveness of our proposed subject-transfer framework we
used this self-recalibration method. In the method, the predic-
tion results from the previous trial (the adjacent±15 segments)
are re-inputted to retrain the classifiers prior to each testing
trial. To investigate the effects of the proposed subject-transfer
framework, we applied the self-recalibration method and con-
ducted additional experiments using DB2 and DB3.

The objective of these experiments was to confirm that
after subject-transferal, the supportive CNN classifiers would
be well retrained and adapted, based on the predictions from
previous trials. This is because in the proposed framework
the supportive CNN classifiers were trained with all trials,
including the trial-to-trial variability of other subjects. For each
experiment, only the first repetition was used as the fine-tuning
data. The first testing trial was performed on repetition 2,
after which the predicted labels were updated using the
prediction from the most recent testing trial. Subsequently,
the supportive CNN classifiers were retrained by the updated
labels. The same procedure was repeated for the other test
trials (repetitions 3-6).

Fig. 12. Selected supportive CNN classifiers from healthy and amputee
subjects for amputee subjects.

The average decoding performance in each database
(DB2 and DB3) with the self-recalibration method is shown in
Fig. 13. With healthy subjects (Fig. 13a), the average decoding
performance showed that the proposed framework outperforms
the self-decoding one. Furthermore, the differences between
the first and last test trials were 4.22% and 4.69% in the
proposed and self-decoding frameworks respectively. This
means that the proposed framework showed a lower loss of
accuracy than the self-decoding framework.

In the amputee subjects (Fig. 13b), the results revealed
that the proposed framework is slightly better than or sim-
ilar to the self-decoding framework. It can be interpreted
that the proposed framework has no effect on the classi-
fication performance for amputee subjects when using the
self-recalibration method. However, for DB3, all subjects
(excluding the target subject) were selected as the supportive
subjects because there were only 9 subjects who attached
all 12 EMG electrodes. Therefore, additional experiments
with more amputee subjects should be conducted, to validate
the effectiveness in amputee subjects. In addition, as these
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Fig. 13. Comparison of classification accuracy between the pro-
posed subject-transfer (CNNs) and the self-decoding (CNN) with
self-recalibration frameworks [24].

experiments were an initial step which was conducted offline,
additional online experiments are required to test a real-world
environment.

Regarding online environments, we also examined training
time and classification time when using only a microprocessor
(Intel i7-7700K CPU) and when using only a GPU environ-
ment. On average, the training time when using the micro-
processor was approximately 3 times that required when using
the GPU environment. However, for the classification time in
each test trial, the microprocessor averaged 3.83 s (±4.8 s)
and the GPU averaged 3.73 s (±4.7 s). Thus, the training
time for the proposed subject-transfer framework is long, but
the classification time did not differ greatly. Therefore, if the
training time can be decreased via cloud computing, distrib-
uted computing and other methods, the proposed framework
can improve efficiency in the online environment, even if the
self-recalibration strategy is applied.

V. CONCLUSION AND FUTURE WORK

This paper presented a subject-transfer framework for
improving the performance of hand movement classification.
In the proposed framework, the supportive CNN classifiers,
which are CNN classifiers pre-trained by other subjects, were
ranked and selected by a single-trial EMG analysis. Then,
the classifiers were fine-tuned and voted for the classifica-
tion of hand movements within the target subject. In sev-
eral experiments examining 50 classes (49 hand movements
and rest state) of healthy and amputee subjects (DB2 and
DB3), the proposed framework demonstrated better classi-
fication accuracy than the self-decoding frameworks. These
experimental results validated the feasibility of applying
the subject-transfer approach to myoelectric interfaces for
real-world applications.

However, the performance of classifying hand movements in
each subject depends on many factors, such as muscle fatigue
induced by repetitions, experimental environment and signal
processing methodology. In future work, we will confirm that
the proposed framework can achieve stable performance for
greater numbers of amputee subjects through numerous trials
and sessions conducted over multiple days. Moreover, online
experiments will be implemented in real-world applications,
such as 3D games or robotic arms, to validate the feasibility
and usability of the proposed framework. We believe that
the subject-transfer framework will be more suitable than
self-decoding frameworks in several real-world applications.

ACKNOWLEDGMENT

The authors would like to thank Dr. X. Zhai at the City
University of Hong Kong for his help in the experimental
results, especially in feature extraction and self-recalibration.

REFERENCES

[1] L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins,
“A real-time pattern recognition based myoelectric control usability
study implemented in a virtual environment,” in Proc. 29th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Lyon, France, Aug. 2007,
pp. 4842–4845.

[2] C. Castellini, A. E. Fiorilla, and G. Sandini, “Multi-subject/daily-
life activity EMG-based control of mechanical hands,” J. Neuroeng.
Rehabil., vol. 6, no. 1, p. 41, 2009.

[3] E. Scheme and K. Englehart, “Electromyogram pattern recognition for
control of powered upper-limb prostheses: State of the art and challenges
for clinical use,” J. Rehabil. Res. Develop., vol. 48, no. 6, pp. 643–660,
2011.

[4] B. Peerdeman et al., “Myoelectric forearm prostheses: State of the art
from a user-centered perspective,” J. Rehabil. Res. Develop., vol. 48,
no. 6, pp. 719–737, 2011.

[5] A. Fougner, O. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. Parker,
“Control of upper limb prostheses: Terminology and proportional myo-
electric control—A review,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 20, no. 5, pp. 663–677, Sep. 2012.

[6] R. H. Chowdhury, M. B. I. Reaz, M. A. B. Ali, A. A. A. Bakar,
K. Chellappan, and T. G. Chang, “Surface electromyography signal
processing and classification techniques,” Sensors, vol. 13, no. 9,
pp. 12431–12466, 2013.

[7] J.-H. Kim, F. Bießmann, and S.-W. Lee, “Decoding three-dimensional
trajectory of executed and imagined arm movements from electroen-
cephalogram signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23,
no. 5, pp. 867–876, Sep. 2014.



KIM et al.: SUBJECT-TRANSFER FRAMEWORK BASED ON SINGLE-TRIAL EMG ANALYSIS USING CNNs 103

[8] M. Ison and P. Artemiadis, “The role of muscle synergies in myoelectric
control: Trends and challenges for simultaneous multifunction control,”
J. Neural Eng., vol. 11, no. 5, p. 051001, 2014.

[9] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm, and H. L. Jethani,
“Gesture-based robot control with variable autonomy from the JPL
BioSleeve,” in Proc. IEEE Int. Conf. Robot. Automat., Karlsruhe, Ger-
many, May 2013, pp. 1160–1165.

[10] T. S. Saponas, D. S. Tan, D. Morris, J. Turner, and J. A. Landay,
“Making muscle-computer interfaces more practical,” in Proc. SIGCHI
Conf. Hum. Factors Comput. Syst., Atlanta, GA, USA, Apr. 2010,
pp. 851–854.

[11] M. Zardoshti-Kermani, B. C. Wheeler, K. Badie, and R. M. Hashemi,
“EMG feature evaluation for movement control of upper extremity
prostheses,” IEEE Trans. Rehabil. Eng., vol. 3, no. 4, pp. 324–333,
Dec. 1995.

[12] J. U. Chu, I. Moon, Y. J. Lee, S. K. Kim, and M. S. Mun, “A supervised
feature-projection-based real-time EMG pattern recognition for multi-
function myoelectric hand control,” IEEE/ASME Trans. Mechatronics,
vol. 12, no. 3, pp. 282–290, Jun. 2007.

[13] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere,
F. Tarpin-Bernard, and Y. Laurillau, “EMG feature evaluation for
improving myoelectric pattern recognition robustness,” Expert Syst.
Appl., vol. 40, no. 12, pp. 4832–4840, 2013.

[14] A. Ameri, E. N. Kamavuako, E. J. Scheme, K. B. Englehart, and
P. A. Parker, “Support vector regression for improved real-time, simul-
taneous myoelectric control,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 22, no. 6, pp. 1198–1209, Nov. 2014.

[15] K.-H. Park, H.-I. Suk, and S.-W. Lee, “Position-independent decod-
ing of movement intention for proportional myoelectric interfaces,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 9, pp. 928–939,
Sep. 2016.

[16] N. Jiang, S. Dosen, K.-R. Müller, and D. Farina, “Myoelectric control of
artificial limbs—Is there a need to change focus?” IEEE Signal Process.
Mag., vol. 29, no. 5, pp. 148–152, Sep. 2012.

[17] J. W. Sensinger, B. A. Lock, and T. A. Kuiken, “Adaptive pattern
recognition of myoelectric signals: Exploration of conceptual framework
and practical algorithms,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 17, no. 3, pp. 270–278, Jun. 2009.

[18] T. Tommasi, F. Orabona, C. Castellini, and B. Caputo, “Improving
control of dexterous hand prostheses using adaptive learning,” IEEE
Trans. Robot., vol. 29, no. 1, pp. 207–219, Feb. 2012.

[19] T. Matsubara and J. Morimoto, “Bilinear modeling of EMG signals to
extract user-independent features for multiuser myoelectric interface,”
IEEE Trans. Biomed. Eng., vol. 60, no. 8, pp. 2205–2213, Aug. 2013.

[20] J. Liu, X. Sheng, D. Zhang, J. He, and X. Zhu, “Reduced daily
recalibration of myoelectric prosthesis classifiers based on domain adap-
tation,” IEEE J. Biomed. Health Informat., vol. 20, no. 1, pp. 166–176,
Jan. 2016.

[21] J. Liu, X. Sheng, D. Zhang, N. Jiang, and X. Zhu, “Towards zero
retraining for myoelectric control based on common model component
analysis,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 4,
pp. 444–454, Apr. 2016.

[22] N.-S. Kwak. K.-R. Müller, and S.-W. Lee, “A convolutional neural net-
work for steady state visual evoked potential classification under ambu-
latory environment,” PLoS ONE, vol. 12, no. 2, 2017, Art. no. e0172578.

[23] M. Atzori, M. Cognolato, and H. Müller, “Deep learning with convolu-
tional neural networks applied to electromyography data: A resource
for the classification of movements for prosthetic hands,” Frontiers
Neurorobot., vol. 10, p. 9, Sep. 2016.

[24] X. Zhai, B. Jelfs, R. H. M. Chan, and C. Tin, “Self-recalibrating
surface EMG pattern recognition for neuroprosthesis control based on
convolutional neural network,” Frontiers Neurosci., vol. 11, p. 379,
Jul. 2017.

[25] H. Morioka et al., “Learning a common dictionary for subject-transfer
decoding with resting calibration,” NeuroImage, vol. 111, pp. 167–178,
May 2015.

[26] S.-K. Yeom, S. Fazli, K.-R. Müller, and S.-W. Lee, “An efficient
ERP-based brain-computer interface using random set presentation and
face familiarity,” PLoS ONE, vol. 9, no. 11, 2014, Art. no. e111157.

[27] C.-S. Wei, Y.-P. Lin, Y.-T. Wang, C.-T. Lin, and T.-P. Jung, “A
subject-transfer framework for obviating inter- and intra-subject variabil-
ity in EEG-based drowsiness detection,” NeuroImage, vol. 174, pp. 407–
419, Jul. 2018.

[28] M. Atzori et al., “Electromyography data for non-invasive naturally-
controlled robotic hand prostheses,” Sci. Data, vol. 1, Dec. 2014,
Art. no. 140053.

[29] M. Atzori et al., “Characterization of a benchmark database for myoelec-
tric movement classification,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 23, no. 1, pp. 73–83, Jan. 2015.

[30] O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, “A human-assisting
manipulator teleoperated by EMG signals and arm motions,” IEEE
Trans. Robot. Autom., vol. 19, no. 2, pp. 210–222, Apr. 2003.

[31] F. V. G. Tenore, A. Ramos, A. Fahmy, S. Acharya,
R. Etienne-Cummings, and N. V. Thakor, “Decoding of individuated
finger movements using surface electromyography,” IEEE Trans.
Biomed. Eng., vol. 56, no. 5, pp. 1427–1434, May 2009.

[32] G. Li, A. E. Schultz, and T. A. Kuiken, “Quantifying pattern
recognition—Based myoelectric control of multifunctional transradial
prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 2,
pp. 185–192, Apr. 2010.

[33] X. Zhai, B. Jelfs, R. H. M. Chan, and C. Tin, “Short latency hand
movement classification based on surface EMG spectrogram with PCA,”
in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Orlando, FL, USA, Aug. 2016, pp. 327–330.

[34] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848–854, Jul. 2003.

[35] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,
pp. 315–323.

[36] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for MATLAB,” in Proc. 23rd ACM Int. Conf. Multimedia, Brisbane,
Australia, Oct. 2015, pp. 689–692.

[37] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,” 2014,
arXiv:1410.0759. [Online]. Available: https://arxiv.org/abs/1410.0759

[38] M. Ortiz-Catalan, F. Rouhani, R. Brånemark, and B. Håkansson,
“Offline accuracy: A potentially misleading metric in myoelectric
pattern recognition for prosthetic control,” in Proc. 37th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Milan, Italy, Aug. 2015,
pp. 1140–1143.

[39] D.-O. Won, H.-J. Hwang, S. Dähne, K.-R. Müller, and S.-W. Lee,
“Effect of higher frequency on the classification of steady-state
visual evoked potentials,” J. Neural Eng., vol. 13, no. 1, 2015,
Art. no. 016014.

[40] V. Gregori, A. Gijsberts, and B. Caputo, “Adaptive learning to speed-up
control of prosthetic hands: A few things everybody should know,” in
Proc. Int. Conf. Rehabil. Robot. (ICORR), London, U.K., Jul. 2017,
pp. 1130–1135.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


