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In human body pose estimation, manifold learning has been considered as a useful
method with regard to reducing the dimension of 2D images and 3D body configuration
data. Most commonly, body pose is estimated from silhouettes derived from images or
image sequences. A major problem in applying manifold estimation to pose estimation
is its vulnerability to silhouette variation caused by changes of factors such as viewpoint,
person, and distance.

In this paper, we propose a novel approach that combines three separate man-
ifolds for viewpoint, pose, and 3D body configuration focusing on the problem of
viewpoint-induced silhouette variation. The biased manifold learning is used to learn
these manifolds with appropriately weighted distances. The proposed method requires
four mapping functions that are learned by a generalized regression neural network for
robustness. Despite the use of only three manifolds, experimental results show that the
proposed method can reliably estimate 3D body poses from 2D images with all learned
viewpoints.

Keywords: 3D pose estimation; manifold learning; nonlinear dimensionality reduction.

AMS Subject Classification: 68T10, 68Q32

1. Introduction

Reconstructing 3D human body poses from 2D images is one of the most challenging
issues in computer vision, because there are many factors that should be considered:

aA preliminary partial version of this paper was presented in [10].
bCorresponding author.
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These include, for example, changes of view and body shape, corrupted background
and foreground, and body-part occlusion.2,18 Since most approaches in this field rely
on estimating poses from silhouettes, let us consider a series of 2D silhouette images
originating from a sequence depicting a human action.3 The pixel data in these
images exhibit a nonlinear, high-dimensional dynamics that result in a potentially
very large search space for pose reconstruction.

In order to overcome the “curse of dimensionality”, manifold learning15 has
established itself as one of the core techniques for human body-pose estimation and
tracking. Manifold learning allows to explicitly represent the relationship of high-
dimensional and nonlinear data (such as the dynamics of 2D images and 3D body
configurations) within a low-dimensional space.19 Changes in the silhouette due to
other factors than body pose, however, can cause problems for these approaches.
One of the major sources of error is the variation in viewpoint as illustrated in Fig. 1.
It shows six manifolds that were constructed from image sequences of a walking
action on a treadmill observed from six different viewpoints. These manifolds were
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Fig. 1. Six manifolds for a walking action observed from six different viewpoints.
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generated from the CMU Mobo dataset20 from which we took walking data from
several individuals and six viewpoints. In order to create a manifold associated with
a specific viewpoint, we use all individuals and walking sequences associated with
that viewpoint. It is easy to see from Fig. 1 that the manifold distributions are highly
variable among different viewpoints — despite the same underlying individual and
action. The simultaneous consideration of view and pose variation, therefore, is one
of the challenging problems in pose estimation.

Previous methods for solving the problem of viewpoint variation include, for
example, building multiple manifolds for all possible viewpoints. Each viewpoint
then has its own manifold to represent silhouette variation caused by pose variation.
However, learning and indexing into a large number of manifolds are very complex
and time-consuming. Another method involves separating view factors from map-
ping functions using a tensor decomposition method.12,17 This approach tries to
extract the influence of viewpoint changes from coefficients in mapping functions
between the 3D body configuration manifold and visual input. However, it does
not guarantee a unique mapping between an input image and a corresponding 3D
body pose. Without this unique mapping, different postures and viewpoints can be
mixed in the manifold space resulting in a critical problem for 3D pose estimation.

In this paper, we propose a novel approach to the problem of viewpoint variation
using manifold learning. In order to tackle this problem, three kinds of manifolds are
considered that represent view, pose, and body configuration separately: The view
manifold represents view variation in 2D silhouettes, the pose manifold represents
pose variation in 2D silhouettes, and the body configuration manifold represents
variation of body configuration in 3D. In order to learn these manifolds, we employ
biased manifold learning4 that uses modified distances generated from labeled data.
The application of the biased distance is the key to the success of our approach as
they ensure clear separation of pose and viewpoint variations during the learn-
ing stage. In order for robust mapping among feature spaces (input image, view
manifold, pose manifold, kinematics manifold, 3D body pose), we also employ a
generalized regression neural network to efficiently learn several different mapping
functions.6,16 Finally, the viewpoints are estimated via the view manifold, and 3D
body configurations are estimated via the pose and body configuration manifolds.

The remainder of the paper is organized as follows. In Sec. 2, we review related
studies on human pose estimation. Section 3 describes the proposed method of
modeling pose, view, and body configuration manifolds, and learning the different
mapping functions. In Sec. 4, we present the experimental results and analysis on
the synthesized data and the CMU Mocap dataset. We conclude the paper in Sec. 5.

2. Related Work

Reconstructing human body poses from 2D images has received a lot of inter-
est in recent decades. A large number of human pose estimation approaches have
been model-based utilizing the knowledge of the human skeletal structure. Those
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approaches use parameter optimization to infer hidden information of joint angles
from image data. In general, such methods can be divided into two categories:
top-down and bottom-up.

A top-down approach infers 3D human body poses with kinematic constraints
in the human body.9 Because the total degrees of freedom for a human skeleton is
59, this results in a high-dimensional search space making those approaches rather
time-consuming and in general prone to the curse of dimensionality. The bottom-
up approaches, meanwhile, try to find body parts in 2D images before inferring
whole body poses, for example, by applying a belief propagation algorithm.5 Such
bottom-up approaches are especially vulnerable to occlusion and are computation-
ally expensive in finding the body parts.

Other methods1,7 have also been introduced, which try to directly infer 3D
poses with a learned function from visual inputs and body configuration data.
Such approaches have shown great potential in solving the fundamental problem
of initialization for model-based approaches, as well as in recovering from tracker
failures. However, those methods are exclusively discriminative, learning a trans-
formation function by transforming visual inputs into 3D body configurations or
other intermediate representations.

Contrary to those discriminative approaches, manifold learning is a generative
method that involves learning a mapping function by transforming a learned low-
dimensional manifold representation into a visual input. It is possible to synthesize
a visual silhouette and also fits well within a Bayesian tracking framework. How-
ever, direct application of manifold learning to the Bayesian framework is prob-
lematic since it is “unsupervised”.14 That is, it fails to represent shape, geometric
or view variations. To this end, Lee and Elgammal proposed a method of mod-
eling view and posture manifolds to track human body poses.12,13 Their method
constructs view- and pose-invariant body configuration manifolds from body con-
figuration data. After building the body configuration manifold, view factors are
extracted from a mapping function using Higher-Order Singular Value Decomposi-
tion (HOSVD). After extracting the view factors, the view and pose manifolds are
built. Again, however, the method is based on unsupervised learning, resulting in
potential mapping problems in the learning stage because different pose silhouettes
can be mapped onto the same body configuration.

3. Proposed Method

3.1. Overview

In this section, we provide a brief overview of the proposed method that can be
divided into two phases: training and estimation. In the training phase, the pose,
view, and body configuration manifolds are learned using biased manifold learning.
In addition, the mapping functions among spaces are learned using a generalized
regression neural network. In the estimation phase, the 3D body configuration is
estimated using these learned manifolds and mapping functions.
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(a) Training.

(b) Estimation.

Fig. 2. Framework of the proposed method.

3.1.1. Training

Figure 2(a) shows the training phase in our approach. Three kinds of manifolds
and four mapping functions are learned. For view-invariant body pose estimation,
we need to represent view, pose, and body configuration variations. In order to
represent a silhouette variation caused by changes of viewpoint in 2D images, we
build a view and a pose manifold. The view manifold is constructed in a supervised
fashion using 2D silhouette training data and its view label data. This is to ensure
that all samples in the view manifold space are sorted with a viewpoint number.
For representing the pose and body configuration variations, pose and body con-
figuration manifolds are constructed using 2D silhouette training data, 3D body
configuration data, and pose label data.

After building three manifolds, four different mapping functions are learned,
namely, Silhouette-To-View manifold (STV), Silhouette-To-Pose manifold (STP),
Body configuration-To-Body configuration manifold (BTB), and Pose manifold-
To-Body configuration manifold (PTB). We employ a generalized regression neural
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network for learning these four mapping functions. Traditional approaches for pose
estimation based on manifold learning have mostly used a radial basis function
method for learning mapping functions among the original and embedding spaces.
A radial basis function method is not suited for our approach, because it assumes
that samples are linearly distributed in a local area. In our case, however, the
distances among samples are replaced with biased distances. Thus, the distance
between two samples in the original space and the distance between two samples
in the manifold space are different. As a result, the neighborhoods of a point in
the original space are different from the neighborhoods of a point in an embedding
space. We apply a general regression neural network learning scheme to overcome
those problems.

3.1.2. Estimation

Figure 2(b) shows the estimation phase in our approach. Using the learned three
manifolds and four mapping functions, we can estimate 3D body configurations
from 2D images with various viewpoints in the following way. Given a 2D image,
the corresponding point in the view manifold is estimated using the STV mapping
function. At the same time, a corresponding point in the pose manifold is estimated
using the STP mapping function. With this point and the PTB mapping function,
the corresponding point in the body configuration manifold is estimated. Finally,
this point is mapped to a 3D body configuration with the BTB mapping function.

3.2. Biased manifold learning

In this paper, we use three kinds of manifolds, namely, pose, view, and body config-
uration manifolds, where pose and view manifolds are independent to each other.
One of the main problems in disentangling the effects of view and pose during
learning of the manifolds is to ensure that, indeed, training samples with the same
pose or view are closer to each other in the latent space than training samples
of different poses or views. As Fig. 1 shows, this is not possible to achieve with
standard approaches, which rely on Euclidean distance matrices during learning. In
order to overcome this problem, we employ a biased manifold learning method4 that
is a supervised method based on a biased distance matrix extracted from a label
matrix. This matrix is used to distinguish within-class and between-class samples
to ensure that distances between the former are smaller than between the latter.
We can modify the distances among two extrinsic samples by using the following
equation,

D̃(i, j) = λF × F (i, j) + λG × G(i, j), (3.1)

where D̃(i, j) is the biased distance, F (i, j) is a normalizing function for Euclidean
distance, G(i, j) is a normalizing function for label distance between samples xi and
xj , λF is the weight of the function F (·), and λG is the weight of function G(·). Using
λF and λG, we can control the tradeoff between normalized Euclidean distance and
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Fig. 3. The distribution of samples in a manifold space.

normalized label distance. Figure 3 shows the change of the distributions according
to the values of these two parameters.

The normalizing function F (·), used to transform the sample distribution in
Euclidean space, is defined as

F (i, j) =
α × |D(i, j)|

Dmax − D(i, j)
, (3.2)

where α is a constant, D(i, j) is the original distance between samples Xi and Xj ,
and Dmax is the largest Euclidean distance in D. The normalizing function G(·) for
label distance is defined as

G(i, j) =
β × |L(i, j)|

Lmax − L(i, j)
, (3.3)

where β is a constant, and Lmax is the largest label distance in L. The distance
L(i, j) is defined as follows,

L(i, j) = |Li − Lj|. (3.4)

Figures 4(a) and 4(b) show, respectively, the nearest pose and view neighborhoods
determined based on the Euclidean distance. It is obvious that it is not possible to
obtain ordered samples in this case. In contrast, Figs. 4(c) and 4(d) demonstrate
that biased distances ensure proper ordering of the samples in the latent space.
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P: 22, V: 15º P: 21, V:  15º P: 12, V: 180º P: 9, V: 165º P: 13, V: 180º

Pose sample Neighborhoods

Pose sequence 
22

Pose sample Neighborhoods

(a) Pose neighbors with Euclidean distance.

P: 22, V: 15º P: 21, V:  15º P: 12, V: 180º P: 9, V: 165º P: 13, V: 180º

Pose sample Neighborhoods

Pose sequence 
22

Pose sample Neighborhoods

(b) View neighbors with Euclidean distance.

Pose
sequence 22

P: 22, V: 0º P: 22, V:  15º P: 22, V: 30º P: 22, V: 45º P: 22, V: 60º
Pose sample Neighborhoods

(c) Pose neighbors with biased distance.

P: 21, V: 15º P: 1, V:  15º P: 2, V: 15º P: 3, V: 15º P: 4, V: 15º

15 degree of 
view

View sample Neighborhoods

(d) View neighbors with biased distance.

Fig. 4. Examples of the pose neighbors determined by K-NN with the Euclidean distance and
the biased distance.
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The view manifold should be invariant to pose variation as image silhouettes are
changed easily by view and pose variations. In order to ensure that it is invariant to
pose variations and other factors, we model the view manifold using biased manifold
learning. Before modeling the manifold, we align samples along with the viewpoint
angle. For learning the biased manifold, we again need labeling data to modify the
distances appropriately.

In this paper, we model a view manifold from synthesized 2D images and body
configurations using Poser 7. We take silhouettes from 24 viewpoints. Silhouettes
are grouped with their viewpoint. Figure 5 shows pose samples from one viewpoint.

Similar to the view manifold, we model a pose manifold using a biased manifold
learning approach that is invariant to view variations and other factors. Before
modeling the manifold, we align samples based on the pose sequence number. We use
30 poses for a walking action. We label the pose data with a sequence number and
produce a biased distance matrix. Figure 6 shows viewpoint samples with one pose.

Figure 7 compares Euclidean distance-based manifold learning and biased
distance-based manifold learning. We can see that all samples are sorted along view-
points for the biased view manifold, whereas they are mixed in the Euclidean-based
view manifold. Figure 8 compares Euclidean distance-based manifold learning and
biased distance-based manifold learning in terms of modeling poses. Similarly to
Fig. 7, in Fig. 8(a), all samples in the Euclidean distance-based manifold are mixed,
but in Fig. 8(b), all samples in the biased distance-based manifold are sorted along
pose numbers.

3.3. Learning mapping functions

To estimate the 3D configuration of a human body from a 2D image, we learn
four mapping functions: STP Ψip, STV Ψiv, PTB Ψpk, and BTB Ψbk. In order to

Fig. 5. Pose samples in a viewpoint.
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Fig. 6. Viewpoint samples from one pose.
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(a) View manifold. (b) Biased view manifold.

Fig. 7. The comparison of Euclidean distance-based manifold learning and biased distance-based
manifold learning in terms of modeling viewpoints.

build these mapping functions, we use a Generalized Regression Neural Network
(GRNN).6,16 The GRNN function is defined by the following equations,

E(Y |X) = Ŷ (X) =

n∑
i=1

Yiexp
(
− D2

i

2σ2

)

n∑
i=1

exp
(
− D2

i

2σ2

) , (3.5)

where D2
i = (X − Xi)T (X − Xi), Yi is the ith actual output in a training

dataset, and σ is a smoothing parameter. The GRNN is trained by the following
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(a) Pose manifold. (b) Biased pose manifold.

Fig. 8. Comparison of Euclidean distance-based manifold learning and biased distance-based
manifold learning in terms of modeling poses.

error function,

ε =
1
N

N∑
i=1

(Ŷ (Xi) − Y (Xi))2, (3.6)

where Y (Xi) is the actual output of ith input vector, Ŷ (Xi) is an estimated vector
of ith input vector, Xi is ith input vector.

In this paper, we define the GRNN function as follows,

E(X) = Ψ(T, X), (3.7)

where E(X) is an estimated vector of the GRNN, Ψ(·, ·) is the GRNN function, T

is a target vector, and X is an input vector.
Given the biased pose embedding points Mp and the visual inputs Xi in the

training data, we build a regression function Ψip for mapping visual silhouettes to
pose embedding points

Ψip = Ψ(Mp, Xi). (3.8)

Given the biased view embedding points Mv, we create a regression function Ψiv

for mapping visual silhouettes Xi to view embedding points as follows:

Ψiv = Ψ(Mv, Xi). (3.9)

Given the learned biased body configuration manifold Mk, we build a regression
function Ψbk for mapping body configurations Xb to embedded body configuration
points

Ψbk = Ψ(Mk, Xb). (3.10)

For inferring 3D human body poses, we use three manifold embedding spaces.
We model mapping functions between original and embedding spaces for view, pose,
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and body configurations. To this end, we find correspondences between pose embed-
ding points and body configuration embedding points by the following function:

Ψpk = Ψ(Mk, Mp), (3.11)

where Mk is the point in the body configuration embedding space, and Mp is the
point in the pose embedding space.

3.4. Estimating 3D human body configurations

After learning manifolds and mapping functions, we can infer 3D human body poses
using learned manifolds and mapping functions. In order to find a coordinate in the
pose embedding space for an input silhouette, we use an L2 norm,

Xb∗ = argmin
Xb

‖Ψpk(Ψip(Xi∗)) − Ψbk(Xb)‖2
, (3.12)

where Xi∗ is an input silhouette, Xb is a body configuration, and Xb∗ is the esti-
mated 3D body configuration.

4. Experimental Results and Analysis

4.1. Datasets description

For our experiments, we use synthesized data derived from Poser 7,21 as well as real-
world video data from the CMU MoBo dataset8 augmented by 3D body configura-
tion data from the CMU Motion Capture dataset.20 The synthesized data contains
24 viewpoints from one walking action for a default animated character. The inter-
val between viewpoints is 15◦ and the length of each sequence is 30 frames. The
CMU MoBo dataset contains background images, background subtracted images,
and color images from 25 individuals, four action sequences captured from six differ-
ent viewpoints. The size of an image is 640× 480 pixels. From this dataset, we used
only 33 frames of one walking action from seven individuals for our experiments.

In order to create more variation in viewpoint, we added two more (virtual)
viewpoints using horizontally inverted images from two other viewpoints. Because
the CMU Mobo dataset does not contain ground-truth on 3D body configurations,
we used a walking sequence from the CMU Motion Capture dataset as ground-
truth. The CMU Motion Capture dataset contains 2,605 sequences in six categories
and 23 individuals of which we used 3D walking data from one individual as ground
truth for our walking sequence.

4.2. Experimental analysis

Our experiment can be divided into three steps: (i) Construction of the various man-
ifolds, (ii) embedding visual inputs into low-dimensional spaces, (iii) reconstruction
of 3D body poses from 2D visual input.
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4.2.1. Manifolds construction

In order to train manifolds, we used data from seven individuals. The remaining
two individuals’ data were used for test. In our experiments, we set the parameters
in Eq. (3.1), Eq. (3.2), and Eq. (3.3) as λF = 0, λG = 1, α = 0.9, β = 0.9. Figure 9
shows the results for the construction of the manifolds. Similarly to Figs. 7 and 8
in the previous section, Figs. 9(a) and 9(b) clearly demonstrate that the Euclidean
distance-based approach fails on the data, whereas as shown in Figs. 9(c) and 9(d),
we were able to get neighborhood-preserving results with the proposed method.
Figures 9(e) and 9(f) show the deviations of embedding samples for two manifold
learning approaches. Figure 9(e) compares Euclidean pose manifold with biased
pose manifold learning. For all pose sequences, biased manifold learning yielded
better performance. Figure 9(f) compares the two learning approaches in construc-
tion of the view manifold. Overall, the proposed approach resulted in significantly
lower errors for all viewpoints. However, for the 135◦ view, both methods resulted
in relatively high errors.

Figures 10(a) and 10(b) show the results of embedding using a Radial Basis
Function (RBF) method. Figures 10(c) and 10(d) show the results of embed-
ding using a Generalized Regression Neural Network (GRNN) method. In the fig-
ure, the red colored “*” marks are centers of the trained samples and the “+”
marks are mapping results. In contrast to the RBF, we could obtain a better
mapping result using the GRNN by the tighter clustering of the mapped points
around the trained samples. This highlights the fact that GRNN is able to deal
better with the non-homogeneous neighborhoods in the biased distance mapping
procedure.

4.2.2. Embedding visual inputs

Figure 11 shows the parameter estimation results, and Fig. 12 shows the joint
errors of the proposed method on the synthesized images, in Fig. 11, the green
lines show the ground truth and the red lines show the estimated parameters in
the view manifold. Figure 11(a) shows the view parameter estimation results from
24 viewpoints. Figure 11(b) shows the pose parameter estimation results from 30
poses. We can see that in both cases, our method correctly estimated both the view
and the pose of the animated character.

Figure 12 plots the joint error of the estimation where the x-axis denotes the
joint number. Here, it seems that some joints show more errors than others: these
are the joints located at the back (3, 4), at the neck (5, 6, 7), at the left hand (20),
at the right foot (25), and at the left leg (27, 30). Errors at these joints result from
the fact that the starting posture (with the right foot located in front and the left
hand in the back) and the end posture in the training data are almost the same,
which adds ambiguity to the estimate. Nevertheless, Fig. 12 clearly shows that the
proposed method is invariant to both view and pose variations.
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Fig. 9. Results of manifold construction.
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(a) Pose embedding with RBF. (b) View embedding with RBF.

(c) Pose embedding with GRNN. (d) View embedding with GRNN.

Fig. 10. Results of embedding samples.

4.2.3. Reconstruction of 3D body poses

Figures 13, 14 and 15 illustrate the reconstructed poses from input images. The
leftmost column shows the synthesized images. The rightmost column shows the
estimated 3D body configurations. The second column shows the view embedding
results. The third column shows the pose embedding results.

In Fig. 13, we can see the estimation results that include six walking postures.
In this case, the viewpoint is fixed. In Fig. 13(b), the corresponding points in the
view manifold are located at the same coordinate and the corresponding points in
the pose manifold changes with the pose variations.

In Fig. 14, estimation results with six viewpoints are shown. In this case, the
pose is fixed. In Fig. 14(c), the corresponding points in the pose manifold are located
at the same coordinate and the corresponding points in the view manifold changes
with the viewpoint variations.
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(b) Pose estimation in pose manifold.

Fig. 11. Parameter estimation.

In Fig. 15, results for concurrent view and pose variations are given. In this case,
the pose and viewpoint are not fixed. Figures 14(b) and 14(c) show the correspond-
ing points in the pose and view manifolds changing with the pose and viewpoint
variations.

Figures 16 and 17 show the results of the CMU MoBo dataset and the CMU
MoCap dataset. The first column contains the input 2D images, the second col-
umn shows the corresponding points in the view manifold, the third column shows
the corresponding points in the pose manifold, and the fourth column shows the
reconstructed 3D body configurations.

In spite of noise in the 2D silhouettes and viewpoint changes, we obtained very
robust estimation results. Figure 16 shows the results of the CMU MoBo dataset
with a one-cycle pose sequence. Figure 17 shows the results of the CMU MoBo
dataset with various viewpoints. In both cases, the independence of the manifolds is
well visible with the unvaried factor being reduced to a single point on the manifold.

4.3. Performance evaluation

We compare the performance of the proposed method with K-Nearest Neighbors
(K-NNs) search and with embedding representations using the Gaussian Process
Latent Variable Model (GPLVM)11 on the CMU MoBo dataset. In the case of K-
NNs, we can directly obtain the 3D pose from the nearest training instance, whereas
with GPLVM, using data embedding, we can directly find the embedding for each
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Fig. 12. Parameter errors.

input image silhouette. To compare the performance, we calculated the average error
of all joint coordinates. The average error is calculated by the following equation,

ê =
1

N × P

N∑
i=1

P∑
j=1

norm(|Xij − Yij |)

where N is the length of a pose sequence, P is the number of joints in the body
configuration, Xij is an angle of a joint in the body configuration, and Yij is the
ground truth joint coordinate. The propose method and the nearest neighborhood
method presented similar performance as shown in Table 1, since they use the same
distance metric. There are some differences, however: the K-NNs algorithm decides
based on votes from several posture, whereas in our approach, a nearest embedding
point from a projected point is taken as the result. Hence, if some projected point
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Fig. 13. Poser walking sequences: pose estimation results with various postures.
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Fig. 14. Poser walking sequences: pose estimation results with various viewpoints.
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Fig. 15. Poser walking sequences: pose estimation results under both pose and view variations.

is located at the boundary of two distributions of two postures, K-NNs may take
another neighborhood posture as a result.

In manifold learning, the size of the neighborhood and the number of samples
are the main factors influencing execution time. Table 2 compares the execution
time between biased manifold learning and Euclidean manifold learning on 1,848
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Fig. 16. CMU MoBo walking sequences: pose estimation results with various postures.
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Fig. 17. CMU MoBo walking sequences: pose estimation results with various viewpoints.
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Table 1. An average joint angle error for 30 joints.

Approach Proposed method K-Nearest Neighbor search GPLVM

Average error 0.65 0.86 4.88

Table 2. Comparison of the execution time.

Biased manifold learning Manifold learning

Pose (K = 58) 41.075 s 62.78 s
View (K = 300) 527.742 s 1398.646 s
Kinematics (K = 62) 0.455 s 0.474 s

samples for the CMU MoBo dataset. According to Table 2, the proposed method
is faster than the competing method, which is due to the more efficient distance
mapping.

5. Conclusion

Conventional pose estimation methods based on manifold learning suffer from many
problems caused by unexpected silhouette variation. The simultaneous considera-
tion of pose and view variations, however, is a challenging problem due to the
limited representation.

In order to tackle these problems, we proposed a view-invariant body pose esti-
mation method constructing three kinds of manifolds separating pose, view, and
body configuration. Two types of label data, i.e. view and pose, are used to learn
three biased manifolds. Utilizing the view and pose label data, we could sort samples
in each manifold along the corresponding sequence. In our experiments, deviations
of the biased samples for each group in biased embedding spaces were lower than
those of the original samples, showing the efficacy of the biased distance learning.

Our experimental results showed that the mapping function based on the Gen-
eral Regression Neural Network outperformed the mapping functions based on the
radial basis function method. The biased embedding together with the more effi-
cient learning method made it possible to reliably and robustly estimate 3D body
pose from a 2D image under various viewpoints.

While the proposed method presented good performance in our experiments, it
is still limited to the estimation of the pre-trained actions with one manifold for
each action. For more general applications, it is needed to develop a novel method
that can represent various actions in a manifold.
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