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Abstract: Despite countless studies on autism spectrum disorder (ASD), diagnosis relies on specific behav-
ioral criteria and neuroimaging biomarkers for the disorder are still relatively scarce and irrelevant for
diagnostic workup. Many researchers have focused on functional networks of brain activities using
resting-state functional magnetic resonance imaging (rsfMRI) to diagnose brain diseases, including ASD.
Although some existing methods are able to reveal the abnormalities in functional networks, they are
either highly dependent on prior assumptions for modeling these networks or do not focus on latent func-
tional connectivities (FCs) by considering discriminative relations among FCs in a nonlinear way. In this
article, we propose a novel framework to model multiple networks of rsfMRI with data-driven approaches.
Specifically, we construct large-scale functional networks with hierarchical clustering and find discrimina-
tive connectivity patterns between ASD and normal controls (NC). We then learn features and classifiers
for each cluster through discriminative restricted Boltzmann machines (DRBMs). In the testing phase, each
DRBM determines whether a test sample is ASD or NC, based on which we make a final decision with a
majority voting strategy. We assess the diagnostic performance of the proposed method using public data-
sets and describe the effectiveness of our method by comparing it to competing methods. We also rigor-
ously analyze FCs learned by DRBMs on each cluster and discover dominant FCs that play a major role in
discriminating between ASD and NC. Hum Brain Mapp 38:5804–5821, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Autism spectrum disorder (ASD) is a heritable neurode-
velopmental disorder [Bailey et al., 1995] characterized by

the impaired development of social interactions and repet-
itive patterns of behavior and restricted interests [Amaral
et al., 2008]. According to a recent report [CDC, 2014], 1 in
68 American children is identified as having ASD. Even
though many researchers have devoted their efforts to
developing a neurodevelopmental model [Baron-Cohen,
2009] and identifying disease-specific genes [Levy et al.,
2009] for ASD, its etiology remains unknown. Thus, ASD
diagnosis continues to rely on the identification of behav-
ioral symptoms, which can cause it to be confused with
other psychological and psychiatric disorders [Guilmatre
et al., 2009].

Recently, many researchers have focused on revealing
the abnormalities in functional networks of brain activi-
ties caused by brain diseases such as Alzheimer’s disease
[Greicius et al., 2004; Li et al., 2002], Parkinson’s disease
[Gao and Wu, 2016; Sang et al., 2015], schizophrenia
[Garrity et al., 2007; Liang et al., 2006; Lynall et al., 2010;
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Zhou et al., 2007], and ASD [Iidaka, 2015; Monk et al.,
2009] using resting-state functional magnetic resonance
imaging (rsfMRI). rsfMRI focuses on spontaneous low
frequency fluctuations (<0.1 Hz) in blood-oxygen-level
dependent (BOLD) signals while subjects are not per-
forming any explicit cognitive, language, or motor tasks
[Biswal et al., 1995; Lee et al., 2013]. Numerous studies
have been conducted to discover resting-state functional
networks [Biswal et al., 1995; Raichle et al., 2001; Smith
et al., 2009; Tomasi and Volkow, 2012; Vincent et al.,
2008] and significant evidence exists connecting some of
these networks to certain brain diseases, such as ASD
[Hadjikhani, 2007; Monk et al., 2009; Price et al., 2014;
Rudie et al., 2012].

The conventional method [Fox et al., 2006; Vincent et al.,
2008] for functional network construction is a seed-based
approach [Biswal et al., 1995]. A region of interest (ROI) is
selected as a seed and correlations between the averaged
time courses of BOLD signals on voxels within the seed
and other ROIs are calculated to determine functional con-
nectivities (FCs). Based on this approach, some functional
networks related to ASD are revealed [Verly et al., 2014].
The main drawback of this approach is that results are
highly dependent on seeds, which should be selected in
advance. To overcome this limitation, several data-driven
methods, specifically, single matrix factorization models
such as principal component analysis (PCA), independent
component analysis (ICA), and non-negative matrix factor-
ization were examined [Assaf et al., 2010; Carbonell et al.,
2011; Eavani et al., 2015; Murdaugh et al., 2015; Price
et al., 2014; Zhang et al., 2015]. However, the flexibility
and representational capacity of these methods are limited
and no empirical evidence exists that supports certain
assumptions, such as orthogonality and the independence
of source signals for solving linear-mixing problems
[Hjelm et al., 2014; Liu et al., 2012].

To address the limitations of conventional approaches,
dictionary learning-based methods have been widely used
for analyzing functional networks [Lee et al., 2016; Lv
et al., 2015a, 2015b]. Unlike conventional approaches such
as PCA and ICA, dictionary learning does not impose that
source signals are orthogonal or independent, allowing
more flexibility in adapting the representation to the data
[Mairal et al., 2010]. Specifically, Lv et al. [2015b] proposed
a novel framework, holistic atlases of functional networks
and interaction (HAFNI), which seeks out functional net-
works based on sparse representation and dictionary
learning for whole-brain fMRI data.

As an another alternative to conventional approaches, a
graph theory-based method has been widely used for ana-
lyzing functional networks [Bullmore and Sporns, 2009;
van den Heuvel et al., 2008]. It considers ROIs and their
FCs as nodes and edges, respectively, of a graph and rep-
resents functional networks with attributes of the graph
[van den Heuvel et al., 2008]. Based on this approach,
some researchers have attempted to identify altered graph

topologies in ASD [Itahashi et al., 2014; Martino et al.,
2013; Redcay et al., 2013].

Generative stochastic models for analyzing neuroimaging
data also have garnered great attention [Hjelm et al., 2014;
Iidaka, 2015; Plis et al., 2014; Suk et al., 2014, 2015]. Specifi-
cally, the restricted Boltzmann machine (RBM) [Hinton,
2002] and its extended version, the discriminative RBM
(DRBM) [Larochelle and Bengio, 2008] has been widely used
to model functional networks [Hjelm et al., 2014; Suk et al.,
2014, 2015]. However, only a few studies have applied them
to diagnosing brain diseases [Plis et al., 2014; Suk et al., 2014,
2015].

In this study, we propose a novel framework designed
to model functional networks of rsfMRI in a data-driven
manner for ASD diagnosis. We first consider that a seed-based
FC becomes a basic unit of the functional networks as it rep-
resents temporal synchronization between the BOLD signals
of respective seed and those of other ROIs and characterizes
how they are functionally associated. The seed-based FCs in
which similar connectivity patterns represent that their
respective seeds are similarly associated to other ROIs and
they are highly engaged in the network level. For example,
in Figure 1, we can see that the seed-based FCs (row vectors)
in each group A and B, respectively, show similar connectiv-
ity patterns to other ROIs. In that case, we consider the
seed-based FCs in each group are functionally associated, and
then construct multiple functional networks by clustering
the seed-based FCs in each group. For each cluster, we learn
the features of FCs and classifiers through DRBMs. The
rationale for using DRBMs is that they can learn latent

Figure 1.

An example of a functional connectivity map. Each element of

the map represents connectivity between each pair of ROIs and

a row vector represents seed-based FCs. [Color figure can be

viewed at wileyonlinelibrary.com]

r Multiple Functional Networks Modeling for ASD Diagnosis r

r 5805 r

http://wileyonlinelibrary.com


discriminative features while considering relations among
FCs in a nonlinear way, and then classify these features in a
probabilistic manner. Although deep architecture models
that use RBMs as a building block show promise in various
fields, we adapt this basic model in order to improve the
model’s interpretative network analysis capabilities. By
combining the clustering approach with an ensemble of
DRBMs in a unified framework, the proposed method per-
forms effective diagnosis on public datasets in comparison
with competing methods. We also analyze discriminative
functional connectivities and learned DRBM weights on
each cluster to identify potential biomarkers of ASD.

MATERIALS AND METHODS

Materials and Preprocessing

We acquired preprocessed rsfMRI data1 from the Univer-
sity of Michigan (UM) and the New York University (NYU)
Langone Medical Center; these are the largest number of
samples (149 subjects from UM and 184 subjects from NYU,
in total) in the Autism Brain Imaging Data Exchange
(ABIDE) [Martino et al., 2014]. Table I shows the scan envi-
ronment for each dataset. From each dataset, we considered
only subjects under 20 years old2 and then removed subjects
rejected by the manual inspection conducted by ABIDE.3 In
the end, we used 133 subjects (61 ASD and 72 NC) from the
UM dataset and 130 subjects (58 ASD and 72 NC) from the
NYU dataset.

During preprocessing, the first five volumes were
discarded to ensure magnetization equilibrium and the
remaining volumes were spatially normalized to MNI
space with a voxel size of 3 3 3 3 3 mm3. Nuisance sig-
nals including ventricle, white matter, global signals, and
head motion are regressed out of the data with the Friston
24-parameter model [Fristonand et al., 1996]. Using the
Automated Anatomical Labeling (AAL) atlas [Tzourio-
Mazoyer et al., 2002], the regressed rsfMRI images were
parcellated into 116 ROIs and the time courses of the
BOLD signals in voxels of each ROI were averaged.
Table II shows the names of the ROIs in the AAL
template. The mean signals were then band-pass filtered
from 0.01 to 0.1 Hz resulting in 116-dimensional vectors
for each subject (or sample).

Overview of Methodology

We propose a novel method to model discriminative
functional networks in multiple clusters with data-driven
approaches for ASD diagnosis. Figure 2 illustrates the
overall framework of our method. We first calculate FC by
means of Pearson’s correlation on each pair of ROIs and
construct group-mean FC matrices by averaging the FCs
over training samples of each group (i.e., ASD and NC).
Note that in the group-mean FC matrices, each row vector
denotes a seed-based FC that represents connectivity
patterns between the respective seed and other ROIs. We
consider the seed-based FC becomes a basic unit of the func-
tional networks and hypothesize that the seed-based FCs in
which similar connectivity patterns should be considered
as units to improve ASD diagnostic performance. Based
on this hypothesis, we cluster the seed-based FCs to better
characterize functional networks. We extract discriminative
FCs from each cluster as features and learn nonlinearly
transformed features and classifiers through DRBMs. In
the testing phase, given FCs from the testing sample, each
DRBM probabilistically determines whether a test sample
is an example of ASD or NC. We then consider the proba-
bility of outputs to be the decisional confidence of DRBMs.
Based on the DRBMs’ confidence, we determine a final
clinical decision using an ensemble of outputs from the
DRBM models.

Multiple Network Construction and

Feature Extraction

We first calculate FCs for each ROI pair using the Pear-
son’s correlation of the averaged time courses of BOLD
signals for each sample. We then construct FC matrices
Xt 2 RR3R, where R denotes the number of ROIs and t
denotes the training sample index. By averaging the FC
matrices of each group, we construct group-mean FC
matrices MG 2 RR3R, where G 2 ASD;NCf g. As brain dis-
eases, including ASD, alter functional networks [Rudie
et al., 2013; Verly et al., 2014; Wang et al., 2007], we

TABLE I. Scanners and scan parameters for the UM and

NYU datasets

UM dataset NYU dataset

Scanner 3.0 T GE
Signa scanner

3.0 T Siemens
Allegra scanner

Repetition Time (TR) (ms) 2,000 2,000
Echo Time (TE) (ms) 30 15
Flip angle (8) 90 90
The number of slices 40 33
The number of volumes 300 180
Voxel thickness (mm) 4 3

1ABIDE (http://fcon_1000.projects.nitrc.org/indi/abide) provides
preprocessed rsfMRI datasets for ASD and NC with four different
preprocessing pipelines. In this work, we used datasets prepro-
cessed by the data processing assistant for resting-state fMRI
(DPARSF), convenient plug-in software based on SPM and REST.
2ASD diagnosis mainly occurs for children and adolescents. Addi-
tionally, the age of subjects highly affects ASD diagnosis, as the
brains of children and adolescents are not fully developed, unlike
those of adults. Thus, we only adopted data acquired from subjects
aged<20 years.
3In this work, we rejected data rated as “fail” for the “Rater 1” item,
which examines the general quality of the preprocessed functional
data and was conducted by ABIDE.
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TABLE II. The indices and names of the ROIs in the AAL template

Index ROI label Index ROI label

1,2 Precentral gyrus (PreCG) 3,4 Superior frontal gyrus (dorsal) (SFGdor)
5,6 Orbitofrontal cortex (superior) (ORBsup) 7,8 Middle frontal gyrus (MFG)
9,10 Orbitofrontal cortex (middle) (ORBmid) 11,12 Inferior frontal gyrus (opercular) (IFGoperc)
13,14 Inferior frontal gyrus (triangular) (IFGtriang) 15,16 Orbitofrontal cortex (inferior) (ORBinf)
17,18 Rolandic operculum (ROL) 19,20 Supplementary motor area (SMA)
21,22 Olfactory (OLF) 23,24 Superior frontal gyrus (medial) (SFGmed)
25,26 Orbitofrontal cortex (medial) (ORBmed) 27,28 Rectus gyrus (REC)
29,30 Insula (INS) 31,32 Anterior cingulate gyrus (ACG)
33,34 Middle cingulate gyrus (MCG) 35,36 Posterior cingulate gyrus (PCG)
37,38 Hippocampus (HIP) 39,40 Parahippocampal gyrus (PHG)
41,42 Amygdala (AMYG) 43,44 Calcarine cortex (CAL)
45,46 Cuneus (CUN) 47,48 Lingual gyrus (LING)
49,50 Superior occipital gyrus (SOG) 51,52 Middle occipital gyrus (MOG)
53,54 Inferior occipital gyrus (IOG) 55,56 Fusiform gyrus (FFG)
57,58 Postcentral gyrus (PoCG) 59,60 Superior parietal gyrus (SPG)
61,62 Inferior parietal lobule (IPL) 63,64 Supramarginal gyrus (SMG)
65,66 Angular gyrus (ANG) 67,68 Precuneus (PCUN)
69,70 Paracentral lobule (PCL) 71,72 Caudate (CAU)
73,74 Putamen (PUT) 75,76 Pallidum (PAL)
77,78 Thalamus (THA) 79,80 Heshl gyrus (HES)
81,82 Superior temporal gyrus (STG) 83,84 Temporal pole (superior) (TPOsup)
85,86 Middle temporal gyrus (MTG) 87,88 Temporal pole (middle) (TPOmid)
89,90 Inferior temporal gyrus (ITG) 91–94 Crus I–II of cerebellar hemisphere (CRBLCrus)
95–108 Lobule III–X of cerebellar hemisphere (CRBL) 109–116 Lobule I–X of vermis (Vermis)

Frontal 5 (1–16, 19–28, 69–70); insula 5 (29:30); temporal 5 (79–90); parietal 5 (17–18, 57–68); occipital 5 (43–56).
Limbic 5 (31–40); subcortical 5 (41–42, 71–78); cerebellum 5 (91–108); vermis 5 (109–116).
The odd and even indices refer to the left- and right-hemispheric regions, respectively.

Figure 2.

Illustration of the proposed framework for ASD diagnosis. [Color figure can be viewed at

wileyonlinelibrary.com]
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consider each group-mean FC matrix separately in the
following steps. In each group-mean FC matrix, the rth
row vector denotes a seed-based FC Nr in which the ROI r
is a seed. The seed-based FC represents associations
between the seed ROI and other ROIs, and the connectiv-
ity patterns illustrate how the FCs cooperate with each
other. Thus, we believe that seed-based FCs that show simi-
lar patterns can be characterized in a large-scale network,
by which it is expected for the network analysis to be robust
to noise. For this, we cluster the seed-based FCs by adopting
hierarchical clustering [Rokach and Maimon, 2005] with a
bottom–up approach. In this method, each seed-based FC
starts in its own cluster, and pairs of clusters are merged as
one moves up the hierarchy based on their inter-cluster dis-
tance. Then, the higher hierarchies gradually construct
large-scale networks by enhancing their functional roles. In
order to measure the intercluster distance for each pair of
clusters, we adopt the average linkage method [Sokal and
Michener, 1958], which is commonly used in other research
areas such as ecology and bioinformatics. In the average
linkage method, we compute the distance E(a,b) between
clusters a and b as follows:

E a; bð Þ5
PQa

r51

PQb

k51 12s Na
r ;N

b
k

� �� �
QaQb

; (1)

where Qa and Qb are the number of seed-based FCs Na
r and Nb

k

that belong to clusters a and b, respectively, and s Na
r ;N

b
k

� �
represents their similarity as calculated by means of Pearson’s
correlation. A seed-based FC is represented with an R-dimen-
sional vector, as the seed-based FC consists of FCs between a
seed and R ROIs, including the seed ROI. To cluster the seed-
based FCs, we adopt a method [Liu et al., 2012] that was
designed to analyze functional networks acquired by rsfMRI
in anesthetized rats. Liu et al. [2012] constructed spatial maps
by averaging the clustered seed-based FCs, and illustrated the
effectiveness of the method by comparing with probabilistic
independent component analysis [Beckmann and Smith,
2005]. However, their study examined the distribution of
brain activities in spatial maps for only a single group, and
thus is not applicable to diagnostic applications.

Hierarchical clustering generates a dendrogram for each
of the two groups (i.e., ASD and NC). We first decompose
the dendrograms to a predefined number of clusters C,
which is determined from data (details are provided in the
section “Results”),4 and then we construct 2 3 C clusters.

After constructing 2 3 C large-scale functional networks (C
functional networks per group), we then use these for feature
extraction from rsfMRI. A cluster a consists of Qa seed-based FCs
and each seed-based FC is represented with an R-dimensional
vector. Thus, we have features Fa

t 2 R Qa3Rð Þ31 for a training
sample t in the cluster. Among these features, we select dis-
criminative features between ASD and NC by performing a

two-sample t-test with only training samples. The selected fea-
tures are normalized by z-score transformation, and then fed
into a DRBM for classification as depicted below.

Classifier Learning

We adopt the DRBM [Larochelle and Bengio, 2008],
which is an extended version of the RBM [Hinton, 2002],
to find nonlinear relations among the selected features in
each cluster and design an ensemble classifier with which
we can enhance the diagnostic accuracy of ASD.

An RBM is an energy-based undirected graphical model
consisting of a visible and a hidden layer. Each layer consists

of I visible units v5 vi½ � 2 RI and J hidden units h5 hj

� �
2 RJ .

An RBM can be represented with a parameter set

h5 W;a; bf g, where a5 ai½ � 2 RI and b5 bj

h i
2 RJ represent

bias terms of the visible and hidden layers, respectively, and

W5 Wij

� �
2 RI3J denotes an interlayer connection. Figure 3A

shows the architecture of an RBM. This architecture notably
assumes restricted symmetric connections with no within-
layer connections and models interactions between visible
and hidden units. Because the hidden units h are unobserv-
able, the objective function is defined as the marginal distri-
bution of the visible units v as follows:

p v; hð Þ5 1

Z hð Þ
X

h

e2E v;h;hð Þ; (2)

where Z is a partition function that can be obtained by
summing all possible pairs of v and h [Hinton, 2002] and
E denotes an energy function. In this study, as the FCs
that become observations of the visible units are real
values, we adopt a Gaussian-Bernoulli energy function
[Hinton and Salakhutdinov, 2006]5 defined by

E v;h; hð Þ5
XI

i51

vi2aið Þ2

2r2
i

2
XI

i51

XJ

j51

vi

ri
Wijhj2

XJ

j51

bjhj; (3)

where ri denotes a standard deviation of the ith visible
unit. In this case, the conditional distributions of visible
and hidden units are, respectively, computed by

p vijh; hð Þ5 1ffiffiffiffiffiffi
2p
p

ri

e 2
vi2ai2

PJ
j51 hjWij

� �2

2r2
i

0
B@

1
CA; (4)

p hj51jv; h
� �

5sigm bj1
XI

i51

Wijvi

ri

 !
; (5)

4In this work, we assume that ASD and NC have the same number of
clusters.

5Conventional RBM defines the state of each neuron to be binary,
which seriously limits their application area and one popular
approach to address this problem is to replace the binary visible neu-
rons with the Gaussian ones (Cho et al., 2011).
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where sigm(�) denotes a logistic sigmoid function. To learn
the parameters h5 W;a; bf g of Eq. (3), the contrastive
divergence algorithm [Hinton, 2002] is used, maximizing
the log-likelihood of the marginal distribution of visible units.

Compared to the RBM, a DRBM has one additional layer,
called a label layer, which is injected at the hidden layer to
indicate the label of inputs o 2 0; 1f gS, where S denotes the
number of groups or classes [Larochelle and Bengio, 2008].
Figure 3B shows the architecture of a DRBM. As the hidden
layer is connected to both the visible and label layers, the
DRBM models discriminative feature representations by
integrating the processes of input feature discovery and
classification [Larochelle and Bengio, 2008]. The probability
of an observation p v;o; hð Þ is defined as:

p v; o; hð Þ5 1

Z hð Þ
X

h

e2E v;h;o;hð Þ: (6)

The conditional distribution of the hidden units is
computed by

p hj51jv; o; h
� �

5sigm
XI

i51

Wijvi1
XS

s51

UjsOs

 !
; (7)

where U5 Ujs

� �
2 RJ3S denotes an interlayer connection

between hidden and label layers.
For the label layer, we adopt a softmax function defined

as follows:

p os51jh; hð Þ5
e
PJ

j51 Ujshj

� �
PS0

s051 e
PJ

j51 Ujs0hj

� � : (8)

We also learn DRBM parameters h5 W;a; b;Uf g by
using the contrastive divergence algorithm [Hinton, 2002]
to maximize the log-likelihood of the observed data (v,o).
In our method, the discriminative FCs are the input to the
visible units and their discriminative relations are modeled
in each hidden unit of a DRBM. Thus, the connection
weights W between the visible and hidden units can be
interpreted as discriminative functional networks.

As described in the section “Multiple Network Con-
struction and Feature Extraction,” multiple clusters are
constructed with different functional roles, and we learn
the features of FCs and classifiers for each cluster through
DRBMs. Because of their different functional roles, differ-
ent DRBMs estimate different outputs. To make a clinical
decision, we combine the DRBM outputs using a weighted
voting strategy. Note that each DRBM outputs a decision
with its own confidence in terms of the probability of a
test sample being an example of ASD or NC. We regard
the probabilities as weights for their corresponding models
and the final decision is determined using a weighted sum
of the models’ outputs.

Experimental Setting

To validate the effectiveness of the proposed method, we
compared it with a baseline model, for which we used a sup-
port vector machine (SVM), which is one of the most widely
used classifiers for brain disease diagnosis in the literature
[Chen et al., 2016; Craddock et al., 2009; Fan et al., 2011], and
two other competing methods, recursive feature elimination-
based SVM (RSVM) [Chen et al., 2015; Plitt et al., 2015], and a
graph theory-based SVM (GSVM) [Barttfeld et al., 2012;
Khazaee et al., 2015]. In this work, all the competing methods
also used FCs with Pearson’s correlation as basic features and
a linear SVM6 as a classifier. However, the methods utilized
different feature selection strategies. While the SVM simply
used discriminative FCs selected by t-test (P< 0.05) to con-
struct classifier, the RSVM adopted a recursive feature

Figure 3.

Architectures of (A) RBM and (B) DRBM.

6To optimize the SVM parameter, we utilized a nested 10-fold cross-
validation technique. That is, the training samples from outer cross-
validation were further partitioned into 10 subsets. In an inner cross-
validation of the 10 subsets, 9 were used for training and the remain-
ing subset was used for validation by changing the value of the
parameter 1, whose space was defined with 10 values evenly spaced
between 2210 and 210. After 10 repetitions (i.e., one validation per
subset), we chose the value of 1 that achieved the maximal average
performance. This chosen 1 value was used to train the SVM on the
training samples from outer cross-validation.
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elimination strategy, a pruning technique that eliminates
original input features by using feature ranking coefficients
as classifier weights, and retains a minimum subset of fea-
tures that yields best classification performance ]Guyon et al.,
2002]. We also designed the GSVM by applying graph theory
[Itahashi et al., 2014; Uehara et al., 2014] to FCs and used net-
work topologies as features. In this comparison, we used
“clustering coefficient,” commonly used in the literature,
which is defined as the ratio of the number of edges between
the neighbors of a node and the total number of possible edges
between its neighbors. The clustering coefficient expresses the
level of connectedness of the direct neighbors of a node [van
den Heuvel et al., 2008]. The proposed DRBM-based method
used the t-test (P< 0.05), the same measure as the SVM to
select discriminative FCs, and the number of hidden units J
was set to half the number of visible units I (i.e., J 5 I/2). Figure
4 presents the differences between the methods by focusing on
their discriminative feature and classifier learning strategies.

Note that all the methods adopted both single cluster
(sc) and multiple cluster (mc) approaches. Compared to
the multiple cluster approach, the single cluster method
constructed a network in a single cluster; thus, it is a spe-
cial case of the multiple clusters approach with C 5 1.

RESULTS

For performance evaluation, diagnostic performance was
computed by the following quantitative measurements

� Accuracy (ACC) 5 (TP 1 TN)/(TP 1 TN 1 FP 1 FN)
� Sensitivity (SEN) 5 TP/(TP 1 FN)
� Specificity (SPEC) 5 TN/(TN 1 FP)
� Positive predictive value (PPV) 5 TP/(TP 1 FP)
� Negative predictive value (NPV) 5 TN/(TN 1 FN)

where TP, TN, FP, and FN denote true positive, true nega-
tive, false positive, and false negative, respectively.

UM Dataset

For evaluation, a 10-fold cross-validation technique was
adopted in all the step of the proposed method. In Table
III, we compared the performance of the proposed and
competing methods on the UM dataset. For the multiple
cluster approach, we tested performance with different
numbers of clusters and chose the best performance for
each method. Figure 5 shows the performance change of
the proposed and competing methods based on the num-
ber of clusters.

In accuracy evaluation, the proposed mcDRBM showed
the best accuracy of 80.82% which is higher performance
than that of scDRBM with a 13.12% improvement. Com-
pared to the competing methods, the proposed method
improved by 6.62%, 13.43%, 22.65%, 7.33%, 7.50%, and
11.59% over the scSVM, scRSVM, scGSVM, mcSVM,
mcRSVM, and mcGSVM, respectively. For statistical valida-
tion between classification accuracies of the proposed and
competing methods, we adopted the Wilcoxon signed
rank test [Gibbons and Chakraborti, 2011], which is a non-
parametric statistical hypothesis test and widely known to
validate cross-validation-based classification results.
According to the test, the classification accuracy of pro-
posed method showed significant differences compared to
that of all the competing methods (details are provided in
Table III).

Regarding sensitivity and specificity, the mcDRBM also
had the best performance on the UM dataset. It achieved a
sensitivity of 75.48% and specificity of 85.00%, which were
improvements, respectively, of 4.77% and 8.22% over the
scSVM, 10.00% and 16.43% over the scRSVM, 22.86% and
22.68% over the scGSVM, 8.34% and 17.32% over the
scDRBM, 3.34% and 10.54% over the mcSVM, 10.00% and
5.36% over the mcRSVM, and 24.53% and 0.89% over the
mcGSVM. Note that the higher the sensitivity, the lower
the chance of misdiagnosing ASD, whereas the higher the
specificity, the lower the chance of misdiagnosing NC.

We also computed positive/negative predictive values
(PPV/NPV), which represent the proportion of ASD/NC
correctly diagnosed. The mcDRBM had a PPV of 81.12%
which was an improvement of 7.91%, 16.84%, 25.43%,
17.04%, 10.45%, 5.67%, and 7.29% in comparison with the
scSVM, scRSVM, scGSVM, scDRBM, mcSVM, mcRSVM,
and mcGSVM, respectively. For NPV, the mcDRBM
achieved 81.37%, an improvement of 4.63%, 10.02%,
20.62%, 9.30%, 5.01%, 7.76%, and 13.12% over the scSVM,
scRSVM, scGSVM, scDRBM, mcSVM, mcRSVM, and
mcGSVM, respectively.

NYU Dataset

For evaluation, a 10-fold cross-validation technique was
adopted in all the step of the proposed method. Table IV
shows the performance of the proposed and competing
methods and Figure 6 shows the performance change of

Figure 4.

The differences between the proposed and competing methods

by focusing on their discriminative feature and classifier learning

strategies. [Color figure can be viewed at wileyonlinelibrary.com]
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the methods based on the number of clusters for the NYU
dataset.

The proposed mcDRBM showed the best accuracy,
75.24%, which was higher than that of the scDRBM, with a
7.01% improvement. Compared to the competing methods,
the proposed method improved by 7.90% over the scSVM,
11.70% over the scRSVM, 11.00% over the scGSVM, 3.27%
over the mcSVM, 4.82% over the mcRSVM, and 7.14% over
the mcGSVM. The accuracy of the proposed method
showed significant differences compared to that of scSVM,
scRSVM, and scDRBM (details are provided in Table IV).

The mcDRBM also achieved the best sensitivity, 61.33%,
which was an improvement of 8.00% over the scSVM, 5.66%
over the scRSVM, 5.66% over the scGSVM, 2.33% over the
scDRBM, 0.33% over the mcSVM, 4.00% over the mcRSVM,
and 28.66% over the mcGSVM. The mcDRBM achieved a
specificity of 85.71%, which was an improvement of 8.39%
over the scSVM, 16.60% over the scRSVM, 15.00% over the
scGSVM, 10.89% over the scDRBM, 5.71% over the mcSVM
and the mcRSVM. This was, however, a 10.00% decline in
specificity compared with the mcGSVM. In the case of the
mcGSVM, which showed the best specificity, a severe imbal-
ance between sensitivity and specificity is seen compared to
other methods.

As for PPV and NPV, the mcDRBM had a PPV of
82.10% which was an improvement of 11.39% over the
scSVM, 19.77% over the scRSVM, 25.20% over the scGSVM,
12.39% over the scDRBM, 7.17% over the mcSVM, 8.05%
over the mcRSVM, and 1.27% over the mcGSVM. For NPV,
mcDRBM achieved 73.73% which was an improvement of
5.35% over the scSVM, 7.22% over the scRSVM, 5.19% over
the scGSVM, 3.70% over the scDRBM, 1.71% over the
mcSVM, 3.02% over the mcRSVM, and 8.79% over the
mcGSVM.

(UM 1 NYU) Combined Dataset

We combined the two datasets using half of the samples
from each dataset for training and the other half for test-
ing. Table V summarizes the performance of the proposed
and competing methods and Figure 7 shows the perfor-
mance change of the methods according to the number of
clusters for the (UM1 NYU) combined dataset.

In the accuracy evaluation, the proposed mcDRBM per-
formed best with an accuracy of 67.42%, which is higher
than that of scDRBM with a 3.03% improvement. Com-
pared to the other competing methods, the mcDRBM
improved on the performance of the scSVM, scRSVM,
scGSVM, mcSVM, mcRSVM, and mcGSVM by 2.27%,
9.84%, 4.54%, 2.27%, 3.03%, and 1.51%, respectively.

Table VI shows the diagnostic performance of the mcSVM
and mcDRBM, and the number of FCs for each cluster with

TABLE III. Performance comparison of the proposed and competing methods on the UM dataset

Method ACC (%) SEN (%) SPEC (%) PPV (%) NPV (%)

Single cluster (sc) SVM 74.20* (ES: 0.53) 70.71 76.78 73.21 76.74
RSVM 67.39* (ES: 0.56) 65.48 68.57 64.28 71.35
GSVM 58.17** (ES: 0.63) 52.62 62.32 55.69 60.75
DRBM 67.70* (ES: 0.57) 67.14 67.68 64.08 72.07

Multiple cluster (mc) SVM 73.49* (ES: 0.48) 72.14 74.46 70.67 76.36
RSVM 73.32* (ES: 0.57) 65.48 79.64 75.45 73.61
GSVM 69.23* (ES: 0.50) 50.95 84.11 73.83 68.25
DRBM 80.82 75.48 85.00 81.12 81.37

SVM: support vector machine; RSVM: recursive feature elimination-based SVM; GSVM: graph theory-based SVM; DRBM: discriminative
restricted Boltzmann machine; ACC: accuracy; SEN: sensitivity; SPEC: specificity; PPV: positive predictive value; NPV: negative predictive
value. Asterisks represent the results of the Wilcoxon signed-rank test (*P< 0.05, **P< 0.01) with the proposed mcDRBM and ES denotes the
effect size.

Figure 5.

The diagnostic accuracy of the proposed (DRBM: discriminative

restricted Boltzmann machine) and competing methods (SVM:

support vector machine; RSVM: recursive feature elimination-

based SVM; GSVM: graph theory-based SVM) based on the num-

ber of clusters for the UM dataset. Points and bars show the

mean and standard error of the mean, respectively, over 10-fold

cross-validation. [Color figure can be viewed at wileyonlineli-

brary.com]
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C 5 4. Note that, we constructed C clusters per group in the
section “Multiple Network Construction and Feature Extrac-
tion” (i.e., eight clusters with C 5 4, in total).

The mcDRBM achieved a sensitivity of 58.33%, which was
again the best performance of all methods, representing an
improvement of 1.66%, 5.00%, 8.33%, 8.33%, 5.00%, and
1.66% over the scSVM, scRSVM, scGSVM, mcSVM, mcRSVM,
and mcGSVM, respectively. The mcDRBM achieved a
specificity of 75.00%, which was an improvement of 2.78%,
13.89%, and 5.56% compared to the scSVM, scRSVM, and
scDRBM, respectively, and an improvement of 1.39% over

each of the scGSVM, mcRSVM, and mcGSVM, but a decline
of 2.78% compared with the mcSVM.

Regarding PPV and NPV, the mcDRBM achieved 66.04%
and 68.35%, respectively, which improved by 3.08% and
1.68% in comparison with the scSVM, 12.71% and 7.24%
with the scRSVM, 4.82% and 4.49% with the scGSVM,
4.64% and 1.68% with the scDRBM, 0.82% and 3.23% with
the mcSVM, 3.29% and 2.92% with the mcRSVM, and
1.89% and 1.26% with the mcGSVM.

DISCUSSION

Analysis of Selected FCs on Multiple Clusters

We analyze how multiple clusters are constructed and the
functional roles of the clusters in classification with the
(UM 1 NYU) combined dataset. Figure 8 shows the clustering
results based on C 5 4 per group (i.e., eight clusters, in total)
and selected FCs by conducting t-test (P< 0.05), respectively.

Figure 9 shows th erepresentative selected FCs by con-
ducting t-test on each cluster. The brain networks are drawn
with the BrainNet Viewer software [Xia et al., 2013]. In the
figure, edges denote connections and nodes represent ROIs
with different colors based on their functional modules.7 We
present only the thirty edges that have the largest statistical
differences between ASD and NC (i.e., the smallest P value
of t-test) and their nodes to improve visibility. The FCs on
each cluster become observations of the visible units of
DRBMs, and the DRBMs find latent FCs by considering dis-
criminative relations among the FCs. The results of DRBMs
that are independently conducted on each cluster with the
FCs are fused by a weighted sum strategy for final decision.

TABLE IV. Performance comparison of the proposed and competing methods on the NYU dataset

Method ACC (%) SEN (%) SPEC (%) PPV (%) NPV (%)

Single cluster (sc) SVM 67.34** (ES: 0.58) 53.33 77.32 70.71 68.38
RSVM 63.54* (ES: 0.53) 55.67 69.11 62.33 66.51
GSVM 64.24 (ES: 0.38) 55.67 70.71 56.90 68.54
DRBM 68.23* (ES: 0.47) 59.00 74.82 69.71 70.03

Multiple cluster (mc) SVM 71.97 (ES: 0.34) 61.00 80.00 74.93 72.02
RSVM 70.42 (ES: 0.33) 57.33 80.00 74.05 70.71
GSVM 68.10 (ES: 0.31) 32.67 95.71 80.83 64.94
DRBM 75.24 61.33 85.71 82.10 73.73

SVM: support vector machine; RSVM: recursive feature elimination-based SVM; GSVM: graph theory-based SVM; DRBM: discriminative
restricted Boltzmann machine; ACC: accuracy; SEN: sensitivity; SPEC: specificity; PPV: positive predictive value; NPV: negative predictive
value. Asterisks represent the results of the Wilcoxon signed-rank test (*P< 0.05, **P< 0.01) and with the proposed mcDRBM ES denotes the
effect size.

Figure 6.

The diagnostic accuracy of the proposed (DRBM: discriminative

restricted Boltzmann machine) and competing methods (SVM:

support vector machine; RSVM: recursive feature elimination-

based SVM; GSVM: graph theory-based SVM) based on the num-

ber of clusters for the NYU dataset. Points and bars show the

mean and standard error of the mean, respectively, over 10-fold

cross-validation. [Color figure can be viewed at wileyonlineli-

brary.com]

7The ROIs of the default-mode network are shown in cyan. The mod-
ule in green comprises the ROIs predominantly involved in attention
and execution control. The module in red comprises the ROIs of the
sensorimotor cortex. The module in yellow comprises the regions of
the visual cortex. The module in blue comprises the ROIs of the sub-
cortical nuclei. Finally, magenta nodes represent the regions of the
cerebellum.
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Clusters 4 and 5 showed the best performance, 66.67%, in
Table VI, so we considered these clusters to have important
roles in classification and focused them for further analysis.

Figure 10 provides additional details for Clusters 4 and
5. In Figure 10B, Cluster 5 primarily shows FCs in the
regions of the default-mode network (DMN), including the
bilateral SFGdor/SFGmed/ORBsup/ORBmed/ACG/REC, the
left ORBmid, and the right PCG. These regions are also con-
nected with various posterior regions, including the bilat-
eral IPL, the left IFGtriang/ITG/CAU/SPG/TPOsup/SOG/
CRBL45, the right SMG/TPOmid, and the Vermis3/6/7. It
is widely known that changes to FCs in frontal regions
play important roles in diagnosing ASD [Belmonte et al.,

2004; Courchesne and Pierce, 2005; Geschwind and Levitt,
2007; Hadjikhani et al., 2007; Patriquin et al., 2016; Rudie
et al., 2012; Shih et al., 2010].

Cluster 4 mainly shows that not only FCs in frontal brain
regions, but also FCs in the regions of the subcortical
nuclei, including the bilateral MCG/THA, the left HIP/
CAU/TPOmid, and the right PAL/PUT/PHG connected
with regions of the cerebellum and sensorimotor cortex in
Figure 10A. Note that the regions are closely related to the
“Mirror Neuron System (MNS)” [Likowski et al., 2012]. The
MNS is a brain system that is active when subjects perform
an action themselves and when they observe another person
performing the same action [Rizzolatti and Craighero, 2004].
The MNS is understood to be critically involved in perceiv-
ing other people’s intentions and forming empathy during
social interactions, and a dysfunction of this system has
been identified in ASD [Gu et al., 2015; Hadjikhani, 2007].

Analysis of DRBM Weights

To investigate the role of DRBMs in the proposed
method, we analyze the learned DRBM weights of hidden
layer units (i.e., W in each cluster). As mentioned in the

TABLE V. Performance comparison of the proposed and competing methods on the (UM 1 NYU) combined

dataset

Method ACC (%) SEN (%) SPEC (%) PPV (%) NPV (%)

Single cluster (sc) SVM 65.15 56.67 72.22 62.96 66.67
RSVM 57.58 53.33 61.11 53.33 61.11
GSVM 62.88 50.00 73.61 61.22 63.86
DRBM 64.39 58.33 69.44 61.40 66.67

Multiple cluster (mc) SVM 65.15 50.00 77.78 65.22 65.12
RSVM 64.39 53.33 73.61 62.75 65.43
GSVM 65.91 56.67 73.61 64.15 67.09
DRBM 67.42 58.33 75.00 66.04 68.35

SVM: support vector machine; RSVM: recursive feature elimination-based SVM; GSVM: graph theory-based SVM; DRBM: discriminative
restricted Boltzmann machine; ACC: accuracy; SEN: sensitivity; SPEC: specificity; PPV: positive predictive value; NPV: negative predictive
value.

TABLE VI. Comparison of diagnostic accuracy of the

mcSVM and mcDRBM, and the number of features for

each cluster with C 54 per group (i.e., eight clusters, in

total) for the (UM 1 NYU) combined dataset

Cluster
index mcSVM (%) mcDRBM (%)

Number of
features

1 62.88 62.88 133
2 60.60 59.09 77
3 61.36 65.91 336
4 59.09 66.67 273
5 62.88 66.67 248
6 67.42 65.15 370
7 58.33 60.61 341
8 56.82 58.33 338

Figure 7.

The diagnostic accuracy of the proposed (DRBM: discriminative

restricted Boltzmann machine) and competing methods (SVM:

support vector machine; RSVM: recursive feature elimination-

based SVM; GSVM: graph theory-based SVM) based on the num-

ber of clusters on the (UM 1 NYU) combined dataset. [Color

figure can be viewed at wileyonlinelibrary.com]
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section “Classifier Learning,” the DRBM weights discover
latent relations among discriminative FCs, and hidden
units show different representations of these relations. We
selected the 30 learned weights that have the largest abso-
lute values and their FCs for each DRBM. We then
counted the number of times FCs appear in the representa-
tions and select those from the top 10 that most frequently
appear, labeling them “dominant FCs.”

Figure 11 shows the dominant FCs of DRBMs from
Clusters 4 and 5. Compared to the selected FCs by
conducting t-test in Figure 10B, the learned DRBM from
Cluster 5 focuses on FCs in cerebellar regions including
the Vermis6/7 and the left CRBL45/10, connected to the
regions of the DMN, including the bilateral OLF and the
left SFGmed/ORBsup/MTG/PCG in Figure 11B. Addition-
ally, FCs in the bilateral OLF, which have recently become
known as ASD-related regions [Ashwin et al., 2014;
Rozenkrantz et al., 2015], are dominantly shown as con-
nected with the left FFG/MTG. Finally, FCs in the right
MFG connected with the right PCL/TPOmid are shown in
the learned DRBM weights from Cluster 5.

Regarding the learned DRBM weights from Cluster 4,
FCs in the right subcortical nuclei, including the TPOsup/
TPOmid/AMYG/THA/HIP/CAU/PUT are connected with
cerebellar regions, including the Vermis10 and the right
CRBL7b, and regions of the visual cortex, including the
right IOG/MOG in Figure 11A. Dominant FCs also appear
in the left IPL/SMG/MFG, which are involved in attention
and execution control in the learned DRBM weights from
Cluster 4.

Compared to the FCs selected by focusing on the
statistical differences of individual FCs, the DRBM finds
latent FCs by considering the discriminative relations
among the FCs (i.e., the DRBM concentrates more on FCs
that conduct their functional roles in company with other
FCs to enhance its discriminative power). As a result, the
DRBM found FCs that are important for ASD diagnosis,
even though the FCs are not remarkable in statistical
analysis.

Diagnostic Performance

As mentioned in the section “RESULT,” the proposed
method shows the best performance on all the measure-
ments except for the metric of specificity. On the NYU and
(UM 1 NYU) combined dataset, other methods, GSVM
and SVM, respectively, show higher specificity (details are
provided in Tables IV and V) compared to the proposed
method. However, in these cases, the competing methods
show severe imbalances between sensitivity and specificity
(i.e., low sensitivity while high specificity). To interpret the
relevance of the sensitivity and specificity for clinical
diagnosis, we consider the likelihood ratios (LRs) [Hayden
and Brown, 1999]. Two types of LRs exist, the positive LR
(LR1) and negative LR (LR2) described as follows:

� LR1 5 SEN/(1 2 SPEC)
� LR2 5 (1 2 SEN)/SPEC

The LR1 is the ratio of the probability that an individ-
ual with the disease tested positive to the probability that
an individual without the disease tested positive while
the LR2 is the ratio of the probability that an individual
with the disease tested negative to the probability that an
individual without the disease tested negative. The larger
the LR1, the better test to use for ruling in a disease
while the smaller the LR2, the better test for ruling out a
disease.

Figure 12 shows the LRs of the competing and the pro-
posed methods on each dataset, respectively. In Figure
12A,C, the proposed method has the largest LR1 (5.03 and
2.33) and the smallest LR2 (0.29 and 0.56) on the UM data-
set and the (UM 1 NYU) dataset, respectively. In Figure
12B, the proposed method has the smallest LR2 (0.45) and
the second largest LR1 (4.29) on the NYU dataset. Even
though the mcGSVM has the largest LR1 on NYU dataset,
it shows imbalance between the LR1 and LR2 (i.e., it also
has the largest LR2). From this perspective, not only just
comparing the accuracy, the proposed method showed

Figure 8.

Clustering results based on C 54 with group-mean FC matrices for (A) ASD and (B) NC are

shown, respectively. (C) Selected FCs by means of a t-test (P< 0.05). [Color figure can be

viewed at wileyonlinelibrary.com]
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Figure 9.

Selected FCs by conducting t-test on each cluster with their sag-

ittal (left/right), axial (top/bottom), and coronal (front/back)

views. Nodes denote ROIs and edges represent connections

between ROIs. Only the 30 edges that have the largest statistical

differences between ASD and NC (i.e., the smallest P value of t-

test) are presented to improve visibility. The FCs on each clus-

ter become observations of the visible units of DRBMs, and the

DRBMs find latent FCs by considering discriminative relations

among the FCs. [Color figure can be viewed at wileyonlineli-

brary.com]
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better performance than all the competing methods.
Nevertheless, all the methods including the proposed one
showed low reliability across different datasets (i.e., the
decreased performance on the (UM 1 NYU) combined
dataset compared to individual datasets). We further dis-
cuss some limitations of the proposed method in the next
subsection.

Limitations

Many studies have adopted anatomical ROIs to estimate

functional networks of the brain [Challis et al., 2015;

Glasser et al., 2016; Iidaka, 2015; Plitt et al., 2015; Rudie

et al., 2012; Wee et al., 2014], as we did in this work. How-

ever, it would also be intuitive to use data-driven methods

to obtain functional ROIs, as functional signals within

ROIs detected by data-driven methods are more consistent

than the ROIs detected by anatomical segmentation.

Nonetheless, the proposed method is valuable for auto-

matically finding latent FCs by considering discriminative

relations among FCs in a nonlinear way from data.
We estimated functional networks using Pearson’s correla-

tion, which is one of most widely used and simple
approaches, to focus on the effects of multiple clusters and
DRBMs. However, the estimation of functional networks is
one of major issues in neuroimaging research. Geerligs et al.
[2016] proposed an alternative method based on distance cor-
relation [Szekely et al., 2007], which estimates the multivari-
ate dependence between high dimensional vectors, allowing
for both linear and nonlinear dependencies. Many research-
ers have also devoted their efforts to modeling functional net-
works by accounting for intersubject variability [Eavani et al.,
2015; Liu et al., 2014]. In addition, it is worth noting that
recent studies have focused on the dynamics of functional
networks [Hutchison et al., 2013; Price et al., 2014; Yu et al.,
2015; Zhou et al., 2016]. The high-order functional connectiv-
ity [Zhang et al., 2016] that considers dynamics of low-order

Figure 10.

Selected FCs in Clusters 4 and 5 with their right sagittal (left) and top axial (right) views. Nodes

denote ROIs, the names of the ROIs are given in their abbreviated forms (refer to Table II for

their full names), and edges represent connections between ROIs. Only the 30 edges that have

the largest differences between group-mean FCs of ASD and NC (i.e., the smallest P value of a

t-test) are presented to improve visibility. [Color figure can be viewed at wileyonlinelibrary.com]
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connectivity was proposed as another alternative. It will be
beneficial to consider more elaborate functional network esti-
mation methods with our multiple cluster approach.

Recently, necessity of multisite data analysis is increased
to diagnose brain diseases including ASD [Abraham et al.,
2016; Chen et al., 2016; Nielsen et al., 2013] as the brain

Figure 11.

Frequently appearing FCs (top 10) from DRBM weights from Clusters 4 and 5 with their right

sagittal (left) and top axial (right) views. Nodes denote ROIs, the names of the ROIs are given in

their abbreviated forms (refer to Table II for their full names), and edges represent connections

between ROIs. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 12.

Positive and negative likelihood ratios (LR1 and LR2) of the competing and proposed methods

for each dataset, respectively. (A) UM dataset, (B) NYU dataset, and (C) (UM 1 NYU) dataset.

[Color figure can be viewed at wileyonlinelibrary.com]
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diseases are highly heterogeneous and larger datasets
will be helpful to better assess individual differences.
However, multisite data analysis contains inherent limita-
tions owing to large inhomogeneities in scanning parameters,
subject populations, and research protocols that limit the sen-
sitivity for detecting abnormalities [Nielsen et al., 2013]. As
the reasons, most of the methods in our experiments showed
the decreased diagnostic performance on the (UM 1 NYU)
combined dataset compared to that on the individual
datasets. Although we adopted a basic RBM model to
improve interpretative capabilities, deep architecture models
by stacking RBMs will be helpful for multisite data analysis
as they can extract high-level and complex abstractions as
data representations through a hierarchical learning process
[Najafabadi et al., 2015].

Finally, the number of clusters is empirically determined
in this study even though diagnostic performance depends
on it. A nested cross-validation technique will be one of
the solutions to determine the number of clusters in a
data-driven manner. It will also be worthwhile to analyze
multiple clusters according to some criteria for unraveling
the hierarchical clusters [Alzate and Suykens, 2010; Mall
et al., 2015; Tibshirani et al., 2001].

CONCLUSION

In this study, we proposed a novel method to model
discriminative functional networks from rsfMRI data in
multiple clusters by combining a clustering approach with
an ensemble of DRBMs in a unified framework. We first
constructed multiple clusters to represent various patterns
of discriminative functional networks between ASD and
NC using hierarchical clustering of networks and learned
latent high-level features and classifiers for each cluster in
a probabilistic manner with DRBMs. The final decision
was determined using an ensemble of outputs from the
DRBM models. We assessed the diagnostic performance of
the proposed method on public datasets and validated its
effectiveness by comparing it with competing methods. In
our analysis of multiple clusters and DRBM weights, we
showed that the proposed method effectively estimates
biomarkers of ASD by identifying latent FCs that play a
major role in discriminating ASD and NC. It is noteworthy
that the proposed method can also be applied to the diag-
nosis of other brain diseases, such as Alzheimer’s disease
and schizophrenia. Moreover, it can be extended to other
neuroimaging research that analyzes functional networks
of the brain.
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