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We propose a nonlinear dynamic model for an invasive electroencephalogram analysis that
learns the optimal parameters of the neural population model via the Levenberg–Marquardt
algorithm. We introduce the crucial windows where the estimated parameters present patterns
before seizure onset. The optimal parameters minimizes the error between the observed signal
and the generated signal by the model. The proposed approach e®ectively discriminates be-
tween healthy signals and epileptic seizure signals. We evaluate the proposed method using an
electroencephalogram dataset with normal and epileptic seizure sequences. The empirical
results show that the patterns of parameters as a seizure approach and the method is e±cient
in analyzing nonlinear epilepsy electroencephalogram data. The accuracy of estimating the
optimal parameters is improved by using the nonlinear dynamic model.
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1. Introduction

The analysis of electroencephalogram (EEG) signals is both fascinating and chal-

lenging for computer scientists, neuroscientists, and physicists because new discov-

eries can be made from brain signals by using tools based on nonlinear dynamics,

chaos theory, and information theory. EEG signals collect brain activity during

various events and under a wide range of conditions, such as from an event-related

potential (ERP), an epileptic episode, sleep, or as a result of Parkinsons disease

(Acharya et al., 2005; Carrubbaa et al., 2006; Vossen et al., 2010; Yuvaraj et al.,

2014). These signals primarily exhibit irregular and complex wavy patterns. They are

not only chaotic, but also multivariate, nonlinear, unstable, and non-stationary.

EEG signal analysis has the potential for a variety of applications, including disease

diagnosis and prediction, rehabilitation robot, game control, automobile navigation,

etc. (Xing et al., 2014).

EEG signals obtained during epileptic episodes are critical to properly diagnose

epilepsy as well as to detect and predict seizures. It is possible to diagnose epilepsy if

abnormal EEG signals can be accurately distinguished from normal signals; for this,

pattern extraction is important since it allows interictal brain activity during healthy

intervals to be distinguished from ictal activity during seizures. The ultimate goal is

to be able to forecast seizures as early as possible. Typical forecasting methods use

linear methods, such as the auto-regressive moving average (ARMA) (Kim et al.,

2013a), and usually fail if the data exhibit nonlinear characteristics that are con-

stantly changing. To solve such problems, nonlinear techniques have been widely

applied for seizure detection and prediction in EEG signal analysis (Marshall, 2014;

Khoa et al., 2012).

Nonlinear dynamic models can be used to represent complex physiological phe-

nomena that exhibit chaotic behavior (Acharya et al., 2005). Babloyantz et al.

(1985) ¯rst demonstrated that brain waves during sleep have chaotic characteristics

of a low-dimension. Several nonlinear dynamic analysis methods, such as fractal

dimensions and Lyapunov exponents (LEs) (Shayegh et al., 2014), have been ap-

plied to verify these properties of brain waves. Subsequently, the use of nonlinear

dynamic models has increased in EEG signal analysis. Nonlinear models o®er

improvements over linear methods when analyzing the intrinsic nature of EEG

signals. However, unfortunately, when nonlinear dynamic models are used to ana-

lyze data with complex characteristics, the initial parameter settings and parameter

estimations often need to be provided. These problems are di±cult but important

matters.

In this paper, we propose a nonlinear dynamic model for an invasive EEG analysis,

based on a neural population model (NPM) and the Levenberg–Marquardt (LM)

algorithm. This model reduces some of the burden of using nonlinear models since the

chaotic behavior of the di®erential equations is combined with a parameter estima-

tion algorithm that determines the optimum parameters. In this model parameter

patterns are discovered with crucial windows according to a seizure onset. We then
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evaluate the proposed method and the corresponding optimization techniques by

using an invasive EEG signal that exhibits chaotic behavior.

The remainder of this paper is organized as follows. Section 2 presents the pro-

posed method and Sec. 3 describes the experimental results. Section 4 discusses

existing methods and compares them to the proposed method. Finally, the conclu-

sions are drawn in Sec. 5.

2. Materials and Methods

2.1. Neural population model

The brain is comprised of neural networks that are interconnected via synapses, and

information is transferred through bioelectricity. EEG provides a physiologic signal

that measures the electrical activity in the brain through invasive or noninvasive

methods. An understanding of the oscillations in the neuronal population is essential

for neuroscience because neuronal oscillations are correlated with the dynamic be-

havior of the interaction between cellular and synaptic domains. Neuronal popula-

tion models provide an e®ective approach to describe the dynamic properties of the

neuronal population (Ma et al., 2011). Temporal °uctuations in neuronal population

activity are mainly caused by the interactions of groups of neurons with each other.

These groups include both excitatory and inhibitory neurons with synaptic connec-

tions [Fig. 1(a)] (Sole & Goodwin, 2000).

Excitatory neurons send inputs to other neurons by triggering excitations through

bursts of activity; inhibitory neurons behave in the opposite manner by suppressing

the activity of other neurons. The states of such neurons can be represented as ekðtÞ,
k ¼ 1; . . . ;Ne for excitatory neurons [see the small circles in Fig. 1(a)] and as ilðtÞ,
l ¼ 1; . . . ;Ni for inhibitory neurons [see the small squares in Fig. 1(a)]. The dynamic

interactions in the neuronal population can be described by means of the neuronal
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Inhibitory neurons
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Fig. 1. Neural network for the oscillatory cortex: (a) Neural population comprised of the \E" and \I"
neuron sets, where E is the set of excitatory neurons and I is the set of inhibitory neurons) and
(b) simpli¯ed network in which E and I neurons interact with strengths C1, C2, C3, C4, and P.
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dynamical system shown in Eqs. (2.1) and (2.2):

dek
dt

¼ �ek þ S
1

Ne

XNe

l¼1

uklel �
1

Ni

XNi

l¼1

vkl il � � e
k þ pk

 !
; k ¼ 1; . . . ;Ne; ð2:1Þ

dik
dt

¼ �ik þ S
1

Ne

XNe

l¼1

wklel �
1

Ni

XNi

l¼1

zkl il � � i
k

 !
; k ¼ 1; . . . ;Ni; ð2:2Þ

where t denotes time, and pk denotes the external inputs into the excitatory neurons

(see (Sole & Goodwin, 2000) for details). The parameters u, v, w, and z are the

strengths of the connections between the populations. The neuronal population

models exhibit several types of interactions that involve self- and cross-interactions

expressed by ukl ; vkl ;wkl , and zkl . �
e and � i are the ¯ring thresholds for the excitatory

and inhibitory neurons, respectively. The � e
k and � i

k thresholds should be su±ciently

large (Schuster & Wagner, 1990).

S represents the sigmoid function SðxÞ ¼ ½1þ exp�x ��1. The mutual in°uence of the

population model is described through a sigmoidal function. In general a sigmoid

function is real-valued and di®erentiable with either a non-negative or a non-positive

¯rst derivative. Often, the sigmoid function refers to a special case of the logistic

function, when the logistic functions are sigmoidal and are characterized as solutions to

the di®erential equation (Han & Moraga, 1995). This sigmoid function produces a

nonlinear behavior that is critical to the model and for understanding neuronal activity.

2.2. Nonlinear dynamic model

Since the NPM is rather complicated, in the case of the neural networks that generate

the MEG/EEG signals, a simpli¯ed model is usually more viable as a neural mass

model (David & Fristion, 2003). This model consists of a network of coupled neuronal

populations that use one or two steady-state variables to indicate the mean activity

of the population. This procedure e±ciently determines the steady-state behavior of

the neuronal systems. The average activity of these neuron sets as measured in terms

of their ¯ring rates can be described well with respect to a simple compartment set of

two equations. This so-called mean-¯eld model de¯nes the average activity of each

group as follows:

EðtÞ ¼ 1

Ne

X
j

ejðtÞ; ð2:3Þ

I ðtÞ ¼ 1

Ni

X
l

ilðtÞ: ð2:4Þ

Equations (2.1) and (2.2) can be expressed by simply using a mean-¯eld model [in

Eqs. (2.3) and (2.4)] (Sole & Goodwin, 2000). The dynamics of these variables can be

described by using a two-dimensional system de¯ning a network. Figure 1(b) shows

the basic topology corresponding to the mean-¯eld model. While this model exhibits

oscillations as activity, it is not di±cult to obtain more complex patterns by coupling
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several of these modules to reproduce patterns that occur in the cerebral cortex (Sole

& Goodwin, 2000).

Given an average activity ErðtÞ of the excitatory neurons at location r and an

average activity IrðtÞ of the inhibitory neurons at the same location at time t, this can

be represented with Eqs. (2.5) and (2.6) as:bErðtÞ ¼ �ErðtÞ þ S�ðC1 � ErðtÞ � C2 � IrðtÞ ��e þ PÞ; ð2:5ÞbI rðtÞ ¼ �IrðtÞ þ S�ðC3 � ErðtÞ � C4 � IrðtÞ �� iÞ; ð2:6Þ
where �e ¼P� e

k=Ne, �
i ¼P� i

k=Ni, and P ¼ pk=Ne. This simple model captures

the activity in terms of the oscillations. The excitatory and inhibitory neurons are

connected through self-interactions [C1 and C4 in Fig. 1(b)] and through cross-

interactions [C2 and C3 in Fig. 1(b)] where the excitatory neurons have an external

input. P refers to the external input, and �e and � i are the ¯ring thresholds for the

two neurons with large values.

In this paper, the mean-¯eld model is combined with the LM algorithm to estimate

the parameters of the model. It uses di®erential equation modeling for population

dynamics to generate the new signal bXðtÞ that is similar to the observed signal XðtÞ.
The initial values for Erð0Þ and Irð0Þ are set to 0 to generate the new signal by using

Eqs. (2.4) and (2.5). The parameters for the proposed method are obtained through a

learning process as follows: 9.9, 14.9, 14.9, �4, and 3 for C1, C2, C3, C4, and P,

respectively. It uses nonlinear least-square ¯tting to minimize the sum of the squares

of the residuals between observed signals and generated signals. In addition, the �e

and � i thresholds are set to 2 and 3.5, respectively, according to Schuster and

Wagner (1990).bErðtÞ and bI rðtÞ obtained by using Eqs. (2.5) and (2.6) are considered as the new

activities for the excitatory and inhibitory neurons at time t. In the sigmoid function

S�ð�Þ, the control parameter, � is set to 1. Finally, the output of the model is obtained

by using Eq. (2.7) (Wilson, 1999).bXrðtÞ ¼ bErðtÞ � bI rðtÞ: ð2:7Þ
The proposed method starts at tð0Þ with initial pre-de¯ned values, and gains a new

activity bErð0Þ with Eq. (2.5) and bI rð0Þ with Eq. (2.6). The neuron activity for bEr andbI r obtained from tð0Þ is applied to Eq. (2.7).

We used the LM algorithm (Gavin, 2013) to automatically ¯nd the optimal values

for parameters C1, C2, C3, C4, and P. LM is a popular alternative to the Gauss–

Newton method to ¯nd the minimum of a sum of squares of nonlinear functions. LM

repeatedly updates the parameter values to minimize the error value between the

observed data and the generated data by Eqs. (2.5), (2.6), and (2.7). The error

function of the LM algorithm can be de¯ned as the following:

Eð�Þ ¼
XN
i¼1

½Xi � f ðXi; �Þ�2; ð2:8Þ
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where Xi is the observed data, and f ðXi; �Þ is the predicted data by using function f

with parameters � (C1, C2, C3, C4, and P). To minimize Eð�Þ, � is obtained by

updating iteratively as in Eq. (2.9).

�kþ1 ¼ �k � ðJ TWJ þ �kdiagðJ TWJÞÞ�1J TWEð�kÞ; k � 0; ð2:9Þ
where the weight matrix W is diagonal with Wii ¼ 1=w 2

i , and � is the Levenbergs

damping factor. J is the Jacobian matrix that di®erentiates E from � as follows:

Jð�Þ ¼

#E1ð�Þ
#�1

� � � #E1ð�Þ
#�m

..

. . .
. ..

.

#Enð�Þ
#�1

� � � #Enð�Þ
#�m

26666664

37777775; Eð�Þ ¼

E1ð�Þ
E2ð�Þ

..

.

Enð�Þ

266664
377775 ¼

X1 � f ðX1; �Þ
X2 � f ðX2; �Þ

..

.

Xn � f ðXn; �Þ

266664
377775: ð2:10Þ

To optimize parameters �, the order of the LM is as follows. First, we designate the

initial parameter values and select �. In this paper, we would start with a small value

such as 0.1. Second, we compute the Jacobian matrix and compute the changing

value of the parameters using Eq. (2.9). In other words, when we update the para-

meters � with �, if Eð�Þ increases, then we increase the � continually until Eð�Þ
decreases. Through this process, LM iteratively adjusts the estimates for �, and for

each iteration step the set of parameters � is replaced by a new set of estimates for

those parameters as �. In this paper, � is an n parametric vector that includes C1,

C2, C3, C4, and P. The parameters in the proposed model are adjusted along with

time t, and the evolving time length generated by the model is limited to 512 time

points, which were determined empirically as shown in Table 1. When the signal-

generation process for the model has completed, we obtain the adjusted optimal

parameters.

3. Experimental Results

In this section, we present the experimental results for the parameter estimation

along with the parameter pattern discovery as seizure occurrences. The stability with

chaotic behaviors are depicted with vector ¯eld simulator. It is also measured the

similarity of the generated signals to the observed signals.

3.1. Data description

We performed the experiments on the datasets obtained from the University of

Freiburg (http://epilepsy-database.eu/). Epilepsy EEG data were recorded at the

Epilepsy Center at the University Hospital of Freiburg, Germany. The data con-

tained 21 patient datasets with medically intractable epilepsy that were obtained

through the use of invasive methods. The EEG data were acquired by using an EEG

system to sample six signals at a rate of 256Hz. Electrodes 1–3 were focal electrodes

inside of the seizure region, and electrodes 4–6 were extra-focal electrodes, as seen in
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Fig. 2. Of the 21 patients, 11 have the epileptic focus located within the neocortical

brain structures. The epileptic focus was located in the hippocampus in eight

patients, while it was located in both regions for the remaining two patients. Intra-

cranial grid-, strip-, and depth- electrodes were used to record directly from the focal

areas in order to obtain a high signal-to-noise ratio and to reduce artifacts. As seen in

Fig. 2, the signals obtained from the sixth patient (P6) were recorded by using grid-,

strip-, depth- electrodes while the signals obtained from the second patient (P2) were

recorded only from the depth- electrodes. Each patient experienced 2–5 epileptic

seizure activities. The interictal signals were recorded for a period of at least 24 h

without any seizure.

We used the dataset that consists of interictal signals and one epileptic seizure

signal as the learning data in order to discover the patterns of seizures from normal

functions. For the learning dataset, the window size included 512 time points, and the

(a) (b)

(c) (d)

Fig. 2. (Color online) Electrode positions. The red circles indicate the focal areas, and the blue circles
indicate the extra-focal areas. (a) Depth-electrode positions for measured signals S1, S2, and S4 from
patient P6, (b) strip-electrode positions for the S3 and S6 signals from P6, (c) grid-electrodes of the S5
signal from P6, (d) depth-electrode positions for the S1 to S6 signals for patient P2 (http://epilepsy-
database.eu/fspeeg/download/).
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experimental data from a single patient had 50 window sets. Window size was se-

lected through empirical experiments by considering the sampling rate of the data.

That is, window size was selected as the lower root mean square error (RMSE)

between the recorded signal during a seizure and the signal generated by the model.

Table 1 shows the RMSE per window size, and a window size of 512 shows a lower

error rate than the other window sizes. In this paper, we use the notation P1S3W16

to indicate window W16 from signal S3 for patient P1.

3.2. Stability with chaotic behavior

In this paper, we used a nonlinear dynamic model based on a NPM and the LM

algorithm to estimate the values of neurophysiological parameters using a biophys-

ical model of brain dynamics. The biophysical model about the neurophysiological

brain function model was incorporated with a cortical function including axonal

transmission delays, synapto-dendritic rates, range-dependent connectivities, excit-

atory and inhibitory neural populations. NPMs can describe the macroscopic neural

activity that can be clinically recorded by an EEG. In addition, it is relevant to the

investigation of many pathological neurological phenomena including epilepsy and

Parkinsons disease because the models are operated on the same scale as the recorded

data. Although several models exist in the neuroscience literature, none has leveraged

the systematic approach of optimal control theory to design stimuli to treat such

neurological conditions (Ruths et al., 2014).

A nonlinear dynamic model consists of di®erential equations involving the deri-

vatives of a function. The parameters of these equations are unknown and must be

extracted. The proposed method is a nonlinear dynamic model with a set of di®er-

ential equations that estimate the optimal parameters from the observed EEG data

including the chaotic behavior. We applied a vector ¯eld method to prove the sta-

bility of the di®erential equations in the proposed model. The vector ¯elds can be

visualized in the phase space of a dynamic system that exhibits extremely

Table 1. RMSE by window length in seizure signal.

Num.
Patient

Window Size
Num.
Patient

Window Size

256 512 768 1024 256 512 768 1024

P1 0.2259 0.2562 0.1932 0.1826 P12 0.0300 0.0082 0.0241 0.0414

P2 0.0582 0.0596 0.0700 0.0580 P13 0.4385 0.4426 0.3682 0.4333

P3 0.4132 0.1758 0.4658 0.4717 P14 0.0172 0.0465 0.0217 0.0556

P4 0.0998 0.0887 0.0893 0.1146 P15 0.0064 0.0337 0.0157 0.0068

P5 0.1721 0.0885 0.0417 0.0819 P16 0.1255 0.1173 0.1350 0.1043

P6 0.0814 0.0427 0.0834 0.0571 P17 0.0008 0.0007 0.0303 0.1489

P7 0.0555 0.0216 0.0323 0.0513 P18 0.3314 0.3072 0.2688 0.3180

P8 0.0852 0.0958 0.0532 0.1163 P19 0.1031 0.0946 0.1121 0.0715

P9 0.1614 0.1346 0.1441 0.1471 P20 0.0560 0.0336 0.0132 0.0218

P10 0.1092 0.0462 0.0848 0.0985 P21 0.0429 0.0341 0.0359 0.0382

P11 0.0382 0.0468 0.0315 0.0536 Average 0.1263 0.1036 0.1102 0.1273
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complicated and chaotic behavior (Krauskopf & Osinga, 1999). The challenge is to

¯nd stable and unstable manifolds of the equilibria and periodic orbits because these

organize the global dynamics of the system. The global bifurcations and routes for

chaos can be identi¯ed by tracing the changes in the stability and instability of the

manifolds as the parameters vary.

Figure 3 shows the phase space and the °ow for a damped pendulum (left) as well as

the signal generated by using Eqs. (2.5) and (2.6) (right). A two-dimensional phase

space provides a qualitative picture of the behavior in the dynamic system including its

orbit and °ow. In the vector ¯eld plot (left), the red curve indicates an orbit or

trajectory in a phase space that is obtained by solving the equation. The blue arrows of

the vector ¯eld are tangential to all of the trajectories in the phase space. Some points

in the phase space approach a stable ¯xed point as t ! 1. In summary, if all tra-

jectories approach a ¯xed point, stability is guaranteed in the analysis. In other words,

if all of the trajectories diverge through an in¯nite series, then the system becomes

unstable. In the proposed model, the vector ¯eld converged on a ¯xed point. That is, it

can be considered to be very stable according to vector ¯eld theory. The vector ¯eld or

structure of the phase space depends on the given parameters, and small changes in the

values of the parameters can produce larger qualitative changes in the phase space.

Therefore, nonlinear dynamic systems require the use of a parameter ¯tting method

that considers the stability and re°ects the conditions for the chaotic behavior.

3.3. Parameter estimation for best ¯tting

We used the LM method, which is a popular method for ¯nding the minimum of a

function to solve the parameter estimation problem. This method can automatically

detect the optimal parameter values through an iterative process, to minimize the

Excitation
0 0.2 0.4 0.6 0.8 1

In
hi

bi
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Vector field

(a)

Time
0 50 100 150 200 250 300

V
al

ue

-0.2

-0.1

0

0.1

0.2

0.3

0.4 Excitatory
Inhibitory
Ex - In

Excitatory and Inhibitory

(b)

Fig. 3. (Color onlline) Screen shot of the vector ¯eld simulator. The vector ¯eld of the phase plane for
the damped pendulum is on the left, and the activity of excitatory neurons (black line), activity of
inhibitory neurons (green line), and signal generated for the activity of the excitatory and inhibitory
neurons (red plus symbol) are on the right.
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sum of squares of the di®erences between the input and output data of the model.

The nonlinear di®erential equation is critically dependent on either the initial values

for the parameters or the initial conditions. Therefore, to obtain the initial parameter

values in nonlinear dynamic models, we used the LM learning process to determine

the initial values for the parameters that could guarantee the best performance. The

suitability of using LM to estimate the parameters was veri¯ed by measuring the

accuracy of the signals that were generated. We then compared the optimal para-

meters obtained with LM with those obtained with other state-of-the-art methods,

such as genetic algorithms (GAs) and Markov chain Monte Carlo (MCMC) methods

(Chen & Wang, 2009; Cowles, 2013).

For this experiment, we used both sinusoidal and synthetic signals, as shown in

Fig. 4. Figures 4(a) and 4(b) show the original sinusoidal signal and the signals

generated by using random and ¯xed initial parameters. A synthetic input signal

of (c) and (d) was created with a nonlinear dynamic model without the LM process

by using arbitrarily selected parameters as follows: C1 ¼ 3, C2 ¼ 7, C3 ¼ 10,

0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5
Original
Estimated−GA
Estimated−MC
Estimated−LM

(a)

0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5
Original
Estimated−GA
Estimated−MC
Estimated−LM

(b)
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−0.5

0

0.5

1
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Estimated−GA
Estimated−MC
Estimated−LM

(c)

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1
Original
Estimated−GA
Estimated−MC
Estimated−LM

(d)

Fig. 4. Comparison of LM against other state-of-the-art methods. The generated signal was estimated
with the proposed method by using random as well as ¯xed initial parameters, and a comparison was
performed by updating the values of the parameters obtained with LM as well as the other state-of-the-
art methods for 1000 iterations: (a) Sinusoidal signal generated using random initial parameters, (b)
sinusoidal signal generated using ¯xed initial parameters, (c) synthetic signal generated using random
initial parameters, and (d) synthetic signal generated using ¯xed initial parameters.
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C4 ¼ �5, and P ¼ 1. Also, Figs. 4(c) and 4(d) show the signals generated by LM,

GA, and MCMC, respectively. The ¯xed initial parameters were determined using an

LM learning process of 405 by using a synthetic input signal created based on

the above arbitrarily selected parameter values [see the original signal of Figs. 4(c)

and 4(d)]. The boundary for all parameters during the learning process was con¯g-

ured to have a lower limit at �20 and an upper limit at 20. The optimal values

obtained according to the empirical probability for the ¯xed initial parameter values

in Fig. 4 are as follows: C1 ¼ 9:9, C2 ¼ 14:9, C3 ¼ 14:9, C4 ¼ �4, and P ¼ 3. GA

requires an initial population in order to start, which can either be randomly gen-

erated or pre-de¯ned with starting values that are known to be adequate. The initial

values used for the parameters include a population size of 40 and a maximum

generation number of 1000.

The RMSE between the original and the generated signal is shown in Table 2. We

assumed that the lowest RMSE provides the optimal values for the parameter

values. For the sinusoidal signal, the lowest RMSE was exhibited when we used ¯xed

initial parameters for the LM. In addition, we measured the accuracy of synthetic

signals that were generated by using the proposed method without LM learning for

the input data. In the case of the synthetic signal, the RMSE obtained with LM

learning is 0.035 when ¯xed initial parameters were used. The results of this ex-

periment indicate that the proposed model can guarantee the lowest RMSE between

the observed signal and the generated signal when ¯xed initial parameters for the

LM were used.

Table 3 shows the RMSE and execution time to generate signals using the ¯xed

initial parameters on epileptic signals of several patients. In this experiment, we

divide the input signal into normal and seizure signals with 512 time points for each

patient. We measured the RMSE through parameter estimation methods that used

¯xed initial parameters. The results indicate that the proposed model with LM pa-

rameter estimation obtained the lowest RMSE when compared with other methods.

In addition, the execution time of the proposed method was the fastest among the

other methods, as shown in Table 3, since it has well-behaved functions and rea-

sonable starting parameters.

3.4. Signal estimation

The performance of the proposed method was measured to ensure it provides a

correct estimation for the signal compared with an auto-regressive (AR) model and

Table 2. RMSE of the generated signals is measured from both sinusoidal
and synthetic signals using random and ¯xed initial parameters.

Data
Method

Sinusoidal Signal Synthetic Signal

MCMC GA LM MCMC GA LM

Fixed initial 0.3037 0.1482 0.0721 0.20751 0.3055 0.035

Random initial 0.30722 0.1489 0.3061 0.20774 0.3069 0.2177
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the nonlinear Gaussian kernel method (Yuan et al., 2009; Chisci et al., 2010). The

AR model has been extensively applied in prediction problems, and is known to be a

good model for linear prediction. The nonlinear Gaussian kernel method is a non-

linear regression analysis that produces predicted signals in a smoothing fashion.

The parameters for each model were set for this experiment, with the order

of the auto-regression p ¼ 2 and the nonlinear Gaussian kernels constant h ¼ 5.

Figure 5(a) shows part of signal S1 from patient P5 during normal activity. The

results indicate that the proposed method generated a more accurate signal relative

to the observed signal than the AR model and the nonlinear Gaussian kernel

method. Figure 5(b) shows the seizure signal S1 from patient P18. In this case, the

P18S1 signal can be seen to have a much higher frequency than the P5S1 signal. The

proposed method generates a new signal that can trace the observed signal, in-

cluding complex frequencies.

In Table 4, the RMSE was calculated between the observed signal and the gen-

erated signal for all patients. All of the signals from each patient are composed of 35

normal window sets and 15 seizure window sets. We measured the accuracy without

discriminating between the normal and the seizure signals. The results indicated that

the proposed method performed well and was more accurate for all patients than the

AR model and the nonlinear Gaussian kernel method. With these results, we can

infer that the parameters used for this model are optimal, providing the lowest RMSE

between the observed signals and that generated with the proposed model.

We obtained the optimal parameters for each window set from the 21-patient

dataset. For example, as shown in Table 5, the P5S1 signal obtained from the focal

areas of the seizure has optimal values for C1 and C3, which minimize the error

between the obtained signal and the generated signal and remain positive. C4 and P

are largely represented by negative values, and the values for C2 are obtained in both
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Fig. 5. Comparison of the observed signal against the signals generated with the proposed method, the
AR method, and the nonlinear Gaussian kernel regression method: (a) Normal signal for P5S1W15 and
(b) seizure signal for P18S1W45.
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positive and negative ranges. The average RMSE for the P5S1 data was 0.0153. For

P15S2 and P18S3, the average RMSEs were 0.01 and 0.0151, respectively. Each

window of the other patients provided a similar result to that of P5S1. Thus, the

proposed model provides a high rate of accuracy when the new signals are generated.

In this experiment, we can discover patterns that were obtained from the optimal

parameters of the entire dataset. We can use these parameters to distinguish between

normal and seizure signals. We provide further detail on how patterns present the

approaching of seizure onset in Sec. 3.5.

Table 5. Optimal parameters and the RMSE in epilepsy datasets.

Data Signal C1(In) C2(EI) C3(IE) C4(Ex) P(External) RMSE

P5S1 Win10 1.6584 4.6344 9.2528 �10.795 �0.0669 0.0153

Win20 1.7529 3.3868 8.8478 �9.9731 �0.3820 0.0118

Win30 7.2258 �3.5894 20.4022 �11.182 0.0190 0.0168

Win40 10.5626 �8.5043 18.7538 �10.642 2.1763 0.0140

Win50 7.9316 �5.3095 23.4701 �12.336 �0.0347 0.0184

Average 5.8263 ¡1.876 16.145 ¡10.985 0.3423 0.0153

P15S2 Win10 7.5133 �3.2195 11.3329 �10.200 �5.0000 0.0075

Win20 1.5096 7.3552 7.6501 �8.7523 �2.9654 0.0054

Win30 2.7999 11.587 7.6701 �8.4490 �2.0864 0.0062

Win40 5.5442 �7.7407 21.4605 �11.614 �1.2936 0.0250

Win50 5.1276 �9.7190 18.1164 �8.8721 �2.9284 0.0060

Average 4.4989 ¡0.3474 13.2460 ¡9.5775 ¡2.8548 0.0100

P15S2 Win10 1.5900 2.9130 8.4830 �11.7220 �0.7010 0.0224

Win20 2.2060 14.4590 9.7800 �11.3220 �4.8140 0.0131

Win30 9.7970 �6.0800 9.8810 �11.0060 3.1640 0.0088

Win40 6.3210 �4.7520 20.5250 �10.8080 �0.0300 0.0174

Win50 8.3970 �3.5830 19.2070 �10.4010 0.1260 0.0137

Average 5.6622 0.5914 13.5752 ¡11.052 ¡0.4510 0.0151

Table 4. RMSE between the observed and generated signals compared to the non-parametric
methods.

Proposed Auto- Nonlinear Gaussian Proposed Auto- Nonlinear Gaussian
Patients Method Regressive Kernel Method Patients Method Regressive Kernel Method

P1 0.0605 0.3017 0.3533 P12 0.0310 0.0519 0.3744

P2 0.0737 0.0754 0.3504 P13 0.1092 0.2098 0.6570

P3 0.1647 0.4106 0.4082 P14 0.0130 0.0348 0.0995

P4 0.0259 0.0383 0.4267 P15 0.1331 0.0428 0.1161

P5 0.0485 0.1383 0.1095 P16 0.0196 0.0471 0.2617

P6 0.0097 0.1522 0.3495 P17 0.0031 0.3169 0.1901

P7 0.0029 0.0435 0.3922 P18 0.2269 0.1356 0.4992

P8 0.1110 0.1031 0.4136 P19 0.0364 0.0693 0.2854

P9 0.0036 0.2664 0.2723 P20 0.0672 0.0932 0.3246

P10 0.0240 0.1013 0.2926 P21 0.0589 0.1086 0.2169

P11 0.1030 0.1235 0.1879 Average 0.06313 0.1364 0.3133
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3.5. Parameter changes as seizures

We discovered special patterns in terms of the values of the parameters that allow for

the signals to be classi¯ed into either normal or abnormal. Most normal signals had a

C1 < 5 and seizure signals had C1 > 5. C3 had positive values, where C3 < 10 was

normal and C3 > 10 indicated a seizure. C2 is the most important parameter be-

cause signals can be classi¯ed into positive for normal function and negative for

seizures. During the training process described by Kim et al. (2013b), we observed a

consistent pattern where the parameters allow the signals to be distinguished be-

tween normal and seizure. For example, the majority of healthy signals exhibited

positive values for C1 and C2 with C1 < 5 and C2 > 0, while the majority of the

seizure signals produced C1 > 5 and C2 < 0. Therefore, we discretionally de¯ne

the parameter regions by using a statistical distribution of the parameter values.

The results of the observations provided by Kim et al. (2013b) are used as the

parameter region for the normal and seizure behaviors. We assume that the para-

meters for the normal signals appear inside a consistent area that depends on the

above-mentioned parameter distribution region. We introduce the proposed method

phase plot as a visualization tool shown in Fig. 6. The proposed method phase plot is

a scatter plot of C1 vs. C2, for each window Wiði ¼ 1; . . . ; 50Þ for a given patient P

and signal S. Figure 6 shows two carefully chosen parameters (viz., C1 and C2) to

discriminate seizure onset.

0 5,000 10,000 15,000 20,000 25,000

−10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

C1

C
2

Normal Parameter Area

w4

w4

seizure onset

(a)

0 5,000 10,000 15,000 20,000 25,000

−10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

C1

C
2

Normal Parameter Area

w4, w5, w9, w11, w20, w35

w4 w9

w20w11w5

w35

seizure onset

(b)

0 5,000 10,000 15,000 20,000 25,000

−10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

C1

C
2

Normal Parameter Area

w4, w5, w9, w11, w20, w35

w20w11w5

w36
w4 w9 w35

seizure onset

(c)

Fig. 6. Phase plot of the proposed method: (a) First \crucial" window, (b) all \crucial" windows before
seizure, and (c) all \crucial" windows from the entire signal. An alert can warn of an impending seizure
by noticing that C1 and C2 parameters deviate away from the \normal" region. We present a time-plot
and a phase-plot stage by stage. Notice that most of the \normal" signal windows fall within the
\normal" area of ð0; 5Þ � ð0; 10Þ. The \crucial" parameters, C1 and C2, are either declared as \seizures"
or as possible early alerts.
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In the dataset, the seizure begins in the 36th window signal. Figure 6(a) shows the

¯rst \crucial" parameters that appear for P4S6W4. In the plot, the square formed by

the black dotted line indicates the region that contains a normal parameter. How-

ever, the parameter for P4S6W4 is observed to be outside of the square formed by the

black dotted line. Figure 6(b) shows the parameters as measured before the onset of

an epileptic seizure (i.e., until the 35th window). It presents the patterns in the phase

plot of parameters C1 and C2 with the data recordings for 1min 10 s (35 window set)

before seizure onset. For all six windows, the parameters deviate outside of the

normal region, and such an observation present the patterns before the onset of a

seizure. Figure 6(c) shows all the data from the time windows for P4S6. In this plot,

only one of the red circles appears inside of the normal window region (in the 36th

window signal). During this time window, the patient underwent an epileptic seizure.

Except for this single case, however, most windows appeared inside of the red square,

which indicates that these windows represented abnormal conditions.

In the epilepsy dataset, the region for the \crucial" windows (red color square) is

clearly separated from the region for the normal windows. We use these \crucial"

windows to show patterns of a seizure approaches. Before an epileptic seizure com-

mences, a pattern of the onset of a seizure can be utilized by detecting that \crucial"

windows have begun to appear outside of the region for normal windows. Table 6

shows the number of seizure approaching signs for ¯ve patients where the optimal

parameters from the normal signal windows (35 window set) were used before the

onset of a seizure. P4S1 had four approaching signals before the onset of a seizure,

while P4S2 and P4S3 both had ¯ve. P4 shows an average of four alerts for every six

signals. Patient P7 had an average of ¯ve approaching signs and P14, P16, and P20

had averages of 4, 5, and 7 approaching signs, respectively. These results also indicate

that more approaching signs appeared from focal (1–3) electrodes than from extra-

focal (4–6) electrodes. Therefore, we establish the hypothesis that a seizure can be

detected from the signal of a few focal electrodes.

The receiver operating characteristic (ROC) curve is one of the best-known

approaches to provide a reliable indication of overall separability, with regard to

sensitivity and speci¯city, to discriminate between two amplitude distributions

Table 6. Number of approaching signs using a \crucial" window with C1 and C2 parameters.

Signal Number

S1 S2 S3 S4 S5 S6
Patients Normal Normal Normal Normal Normal Normal

Signs/No. Window P4 4 5 5 3 5 6
P7 7 5 8 5 3 4
P14 5 4 5 4 3 4
P16 7 6 7 4 6 5
P20 9 9 8 6 6 5
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(Mormann et al., 2005). The sensitivity is the ratio of the true positive classi¯cations

to the total number of positive classi¯cations, based on Table 6 and speci¯city is the

ratio of true negative classi¯cations to the total number of negative classi¯cations.

The LE and the e®ective correlation dimension (ECD) are commonly used to

detect seizures (Marshall, 2014; Shayegh et al., 2014). The LEs de¯ne the average

exponential rate of the divergence or the convergence of nearby orbits in the phase

space. The LEs are estimated from data by using the popular Wolf algorithm which

detects and quanti¯es chaos in experimental data by accurately estimating the ¯rst

few non-negative LEs (Wolf et al., 1985). The dimension of the correlation is used in

order to detect the onset of an epileptic seizure in terms of the decrease in di-

mensionality. That is, a reduction in dimensionality can be indicated during a seizure

(Osorio et al., 2001).

In Table 7, the sensitivity indicates the correct classi¯cation of normal signals as

normal, and the speci¯city indicates the probability of classifying signals as seizures.

In this paper, we demonstrate that using a nonlinear dynamic model with the cor-

responding optimal parameters provides the patterns of a seizure approache. The

approaching sign is provided by using false negatives within the confusion matrix

that classify normal signals as seizure signals. Therefore, the proposed method o®ers

the patterns of seizures in advance with a low sensitivity and a high speci¯city.

Table 7 shows that the proposed method and ECD have similar sensitivities, di®ering

Table 7. Sensitivity and speci¯city.

Proposed Method LE ECD

Patients Sensitivity(%) Speci¯city(%) Sensitivity(%) Speci¯city(%) Sensitivity(%) Speci¯city(%)

P1 82.9 93.3 100.0 93.3 88.6 73.3

P2 77.1 100.0 94.3 100.0 85.7 73.3

P3 85.7 100.0 94.3 100.0 88.6 66.7

P4 88.6 93.3 100.0 100.0 91.4 66.7

P5 80.0 100.0 97.1 93.3 88.6 93.3

P6 85.7 93.3 100.0 93.3 88.6 86.7

P7 80.0 100.0 100.0 100.0 91.4 66.7

P8 88.6 100.0 100.0 93.3 85.7 80.0

P9 82.9 100.0 100.0 100.0 88.6 73.3

P10 82.9 93.3 88.6 100.0 91.4 73.3

P11 80.0 100.0 100.0 100.0 85.7 60.0

P12 82.9 100.0 97.1 80.0 85.7 86.7

P13 88.6 100.0 100.0 100.0 88.6 86.7

P14 85.7 93.3 97.1 100.0 91.4 86.7

P15 85.7 100.0 97.1 93.3 94.3 80.0

P16 80.0 93.3 97.1 93.3 85.7 60.0

P17 77.1 100.0 100.0 86.7 82.9 86.7

P18 88.6 100.0 97.1 93.3 91.4 86.7

P19 85.7 100.0 100.0 86.7 88.6 86.7

P20 74.3 93.3 97.1 100.0 82.9 60.0

P21 82.9 93.3 94.3 93.3 88.6 66.7

Average 83.1 97.5 97.7 95.2 88.3 76.2
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only by 5% on average, while the speci¯city of ECD appears to be 20% lower on

average than the proposed method. A high probability was reported for LE in terms

of both sensitivity and speci¯city. Therefore, the proposed method can present a

robust pattern of a seizure approaching when compared to other methods.

4. Discussion

In order to validate a nonlinear model, an important task is to identify unknown

parameters from actual data captured from experiments. We used a parametric

estimation method constrained with di®erential equations in order to analyze an

epilepsy EEG data. The two methods that are normally used for parametric esti-

mation include least- squares estimation (LSE) and maximum likelihood estimation

(MLE) (Johnson & Faunt, 1992). LSE is used to ¯t a model to the given data by

minimizing the sum of squares of the errors between the observed data and the

generated data by the model. The Gauss–Newton method can be used for such ends,

and an improved version thereof is the LM algorithm. On the other hand, MLE is a

standard approach and an indispensable tool for parametric estimation, particularly

for nonlinear modeling. A GA and a MCMC method (i.e., Bayesian estimation) are

based on MLE and can also be used.

Jansen et al. (2001) used a GA to perform a parametric estimation of peri-stimulus

EEG activity. Chen & Wang (2009) estimated the kinetic parameters for the hydro-

genation reaction in DNA. A GA was employed for parametric estimation problems

(Goldberg, 1989), and the GAs have since been applied in various disciplines (Nougues

et al., 2002), (Milani & Milani, 2012). With respect to EEG data, Valdes et al. (1999)

reported the ¯rst model ¯tting, and Bremer & Kaplan (2001) and Zhou et al. (2011)

used a Bayesian approach to perform parametric estimation of EEG models via a

marginalized MCMC approach. In this paper, we proposed LM to estimate the pa-

rameter set and showed that it outperformed the other state-of-the-art methods.

The proposed method is a nonlinear dynamic model that uses di®erential equa-

tions based on an LM algorithm to minimize the sum of the squares of the deviations

between observed data and the data generated by a model. The ¯nal goal of our

model is to provide the patterns of a seizure approache. Much research has been

conducted to this end by using nonlinear, LE, and correlation dimension (CD)

methods. Jansen & Rit (1995) proposed a canonical form of the population model

adapted to the simulation of spontaneous EEG and evoked the potential for the

visual cortex. Gourevitch et al. (2006) developed complementary approaches in order

to estimate the direction of the coupling between signals by re°ecting the external

inputs. These methods are based on linear systems and can capture only linear

properties of relationships within the time series. However, the epilepsy EEG signals

acquired from patients are nonlinear.

Various methods based on nonlinear dynamics have been employed to detect

seizures. Sackellares et al. (2006) evaluated the performance of an adaptive threshold

seizure-warning algorithm that detects the convergence in short-term maximum LE
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values obtained from critical intracranial EEG electrode sites as seizure precursors.

Nesaei and Sharafat (2013) proposed a method to detect seizures by considering the

largest LE as the discriminating feature in a discrete wavelet packet transform in

segmented EEG signals. Maiwald et al. (2004) suggested that the characteristic

useful in predicting seizures is a function of the sensitivity and the maximum false

prediction rate. It is revealed by assessing and comparing three nonlinear prediction

methods by means of the seizure prediction characteristics including the ECD, the

dynamical similarity index, and the prospective version of the accumulated energy.

In the present paper, we compared the performance of the proposed method with

that of the state-of-the-art methods mentioned above. The proposed method is based

on a nonlinear dynamic model and can provide the optimal parameters of model to

draw the signal that was most similar with complex epilepsy EEG data.

5. Conclusion

We developed an approach to provide the best parameter values for analyzing epi-

lepsy EEG data. The proposed method also can discover the essential parameters

that are able to distinguish the seizure signal from normal data using a nonlinear,

dynamic model which is based on a NPM. The proposed method o®ers the best

parameters of the model to generate the data that most closely resembles to the

obtained data. Our analysis indicates that the combination of C1 and C2 parameters

(i.e., the \crucial" parameters) in the proposed method is su±cient to distinguish

windows of normal function from those with seizure activity. Furthermore, the

\crucial" parameters present the patterns of the approaching of seizures.

Our model takes into account the chaotic characteristics of the epileptic signals by

using a NPM. A nonlinear dynamic model is combined with an LM algorithm to

provide the potential for discriminating between healthy activity and seizures. In

future studies, we will extend the new parameter estimation method to ¯nd a global

minimum in order to solve the multi-structure curve-¯tting problems.
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