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ABSTRACT: EEG-based discrimination among motor imagery states
has been widely studied for brain-computer interfaces (BCIs) due to

the great potential for real-life applications. However, in terms of

designing a motor imagery-based BCI system, a lot of research in the

literature either uses a frequency band of interest selected manually
based on the visual analysis of EEG data or is set to a general broad

band, causing performance degradation in classification. In this arti-

cle, we propose a novel method of selecting subject and class spe-

cific frequency bands based on the analysis of a channel-frequency
matrix, which we call a channel-frequency map. We operate the clas-

sification process for each frequency band individually, i.e., spatial fil-

tering, feature extraction, and classification, and determine a class
label for an input EEG by considering the outputs from multiple classi-

fiers together at the end. From our experiments on a public dataset of

BCI Competition IV (2008) II-a that includes four motor imagery tasks

from nine subjects, the proposed algorithm outperformed the com-
mon spatial pattern (CSP) algorithm in a broad band and a filter bank

CSP algorithm on average in terms of cross-validation and session-

to-session transfer rate. Furthermore, a considerable increase of

classification accuracy has been achieved for certain subjects. We
also would like to note that the proposed data-driven frequency

bands selection method is applicable to other kinds of single-trial

EEG classifications that are based on modulations of brain rhythms,

by no means limited to motor imagery-based BCI applications.
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I. INTRODUCTION

Brain-computer interfaces (BCIs) establish a direct communication

pathway between human intentions and external electronic devices

via the translation of electrical brain signals into user commands

without using muscle activity or peripheral nerves. Because of their

great potential in medical and industrial applications, they have been

considered an emerging technology and have been of great interest

to many research groups (Pfurtscheller and Neuper, 2001; Vaughan

et al., 2006; Birbaumer and Cohen, 2007; Lotte et al., 2007; Hoff-

mann et al., 2008; Nijholt and Tan, 2008; van Gerven et al., 2009;

Cecotti, 2010; Martens and Leiva, 2010). From a medical point of

view, because they are not dependent on neuromuscular control,

BCIs are expected to be able to provide severely disabled people suf-

fering from the disastrous neuromuscular disorders (e.g., amyotro-

phic lateral sclerosis, brainstem stroke, or spinal cord injuries) with

an efficient channel of communication to the outside world.

However, the high complexity of the human brain and low

signal-to-noise ratio (SNR) of EEG signals prevents the BCI sys-

tems from decoding every human mental state or intent. A small

subset of states such as mental arithmetic, visual attention, and

motor imagery have been efficiently and robustly used for word

spellers (Krusienski et al., 2008; Rakotomamonjy and Guigue,

2008; Salvaris and Sepulveda, 2009; Cecotti, 2010; Martens and

Leiva, 2010), games (Tangermann et al., 2008), and robot or

wheelchair control (Philips et al., 2007; Galan et al., 2008).

Increasing attention has been devoted to the analysis of EEG sig-

nals evoked by motor imagery because those signals can be eli-

cited both asynchronously and continuously. There are also well-

known neuro-physiological phenomena that the signal power in

the motor and somatosensory cortex is suppressed or augmented

due to the loss of synchrony in a particular frequency range dur-

ing motor imagery, which are called event-related desynchroniza-

tion (ERD) or event-related synchronization (ERS), respectively

(Pfurtscheller and Neuper, 2001).

Brain rhythms related to the imagination of movement are

known to be broadly concentrated in the l (12–16 Hz) and b
(18–24 Hz) frequency bands. However, the frequency bands are

highly variable over different motor imageries and between sub-

jects. In terms of designing a motor imagery-based BCI system, the

selection of proper frequency bands in which we filter the EEG data

before extracting features are one of the most challenging problems

in BCIs. In general, a frequency range of importance in
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discrimination of EEG signals is identified by the visual analysis on

the data transformed into a frequency domain requiring a time-con-

suming process for each set of mental tasks to be classified and for

each subject.

To our knowledge, the frequency bands on which the process in

a BCI system operates are either selected manually or set to a gen-

eral broad band. Only a few papers in the literature (Dalponte et al.,

2007; Chin et al., 2009; Fazli et al., 2009) have partially addressed

the selection of frequency bands. In this article, we propose a novel

method of selecting subject and class specific frequency bands in

motor imagery classification based on time-frequency map analysis

using event-related spectral perturbation (ERSP) (Makeig et al.,

2004). In each of the selected frequency bands, the classification

process operates individually and a class label for an input EEG is

determined by considering the outputs from multiple classifiers to-

gether at the end. An overview of the proposed motor imagery clas-

sification system is illustrated in Figure 1, where the thick solid

arrows denote multiple streams operated in parallel. We implement

a one-versus-the-rest strategy in finding optimal spatial filters and

training support vector machines (SVMs).

This article is structured as follows. Section II introduces related

work, whereas Section III describes the experimental setup of the

classified EEG dataset and preprocessing methods. In Section IV,

we propose a method of frequency band selection and elucidate our

approach to extracting features and designing classifiers. Experi-

mental results are then presented in Section V and a concluding dis-

cussion follows in Section VI.

II. RELATED WORK

A noninvasive EEG-based BCI suffers from low SNR and low spa-

tial resolution from volume conduction effects, and a curse of

dimensionality problem from multiple electrodes. Furthermore, it is

known that the electrical signals of human brain activity are highly

variable inter-subjects and inter-trials even for the same subjects,

yielding subpar performance in the classification of electrical brain

activity, which makes their application still far from viable for the

real life.

Recently, techniques based on machine learning (ML) have

been considered to be a useful tool to circumvent these problems.

When compared with conventional approaches of univariate data

analysis, ML allows coping with multiple random variables simul-

taneously. One of the most widely used methods in BCIs is the

common spatial pattern (CSP) (Koles, 1991), thanks to its simplic-

ity in interpretation and implementation. The CSP algorithm finds

spatial filters that transform raw EEG patterns of two classes to be

maximally discriminative based on the ratio of the variance of the

data conditioned for one class to the variance of the data condi-

tioned for the other class. In the case of left-hand and right-hand

motor imagery classification, spatial filters can be designed to

extract class-conditional components that maximally differentiate

EEG data of left-hand motor imagery from those of right-hand

motor imagery, or vice versa. Because of the binary nature and vul-

nerability to outliers, many research groups have devoted their

efforts to extend the conventional CSP and proposed variants of

CSP (Lemm et al., 2005; Dornhege et al., 2006; Ang et al., 2008;

Blankertz et al., 2008; Grosse-Wentrup and Buss, 2008; Wang and

Zheng, 2008; Chin et al., 2009; Haiping et al., 2010). Gouy-Pailler

et al. (2010) extended the method of joint approximate diagonaliza-

tion (JAD), which earlier proved to be useful to find efficient spatial

filters in the context of multiclass motor imagery BCIs in (Grosse-

Wentrup and Buss, 2008), to recover task-related nonstationary

brain sources using a maximum likelihood framework.

Although a wideband of 8–30 Hz covers responsive frequency

components activated during motor imagery, Ramoser et al. (2000)

demonstrated that the most responsive frequency bands varies over

subjects. Fazli et al. (2009) focused on decoding EEG data for sub-

ject-independent BCI by constructing a library of subject-specific

spatio-temporal filters from a large database of EEG recordings of

83 BCI users and deriving a subject independent classifier. Dal-

ponte et al. (2007) proposed a method for the selection of time and

frequency intervals for effective feature extraction in EEG signals

for BCI applications by searching a huge space of quantized fre-

quency and time intervals.

To address the problem of selecting the subject-specific fre-

quency bands for the CSP algorithm, Ang et al. (2008) proposed to

dissect a broad frequency range of interests into small nonoverlap-

ping filter banks and applied a CSP algorithm to each band, which

they called the filter bank common spatial pattern (FBCSP). Later,

Chin et al. (2009) extended it for multiclass motor imagery classifi-

cation. However, when an informative frequency band ranges over

two or more consecutive bands, the FBCSP method of using the

predefined and nonoverlapping bandwidth in a consecutive fre-

quency band enforces to divide the effective bands into multiple

bands and process them independently. This can cause poor per-

formance in classification and make it difficult to analyze the

results.

In this article, we propose a novel method of data-driven fre-

quency band selection for multiclass motor imagery classification.

Unlike Chin et al.’s (2009) method (Rakotomamonjy and Guigue,

2008), in our method, we consider only the frequency compo-

nents that are highly responsive to each motor imagery and on

top of those components we build frequency bands, each of

which is composed of the consecutive frequency components hav-

ing different bandwidth and sizes, and perform the ensuing proc-

esses individually.

Figure 1. Overview of the proposed method. The thick solid lines

represent multiple streams, one for each frequency band, running in

parallel, and the dotted lines represent an exchange of information.
[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

124 Vol. 21, 123–130 (2011)



III. EXPERIMENTAL SETUPAND PREPROCESSING

We investigate a dataset of the publicly available web-based BCI

competition to present the effectiveness of the proposed method.

Later, we compare the results of the proposed method with those of

the competition winners and other methods published in the

literature.

A. Experimental Setup and Mental Tasks. We use the dataset

IIa of BCI Competition IV (2008) (http://www.bbci.de/competition/

iv/#datasets) provided by the BCI research group at Graz University

(Brunner et al., 2008), which contains EEG signals recorded from

nine subjects performing four different motor imagery tasks, i.e.,

left-hand, right-hand, foot, and tongue, comprised of two sessions

conducted on different days. Each session includes six runs separated

by short breaks, and a run is further composed of 48 trials; there are

12 trials per motor imagery task and 288 trials in total per session.

The EEG data was acquired using 22 AG/AgCl electrodes

whose montage is presented in Figure 2(left). The signals were

sampled at 250 Hz and bandpass-filtered between 0.5 Hz and 100

Hz. An additional 50 Hz notch filter was also applied to suppress

line noise. The timing scheme of the experimental paradigm is

depicted in Figure 2(right). The subjects were asked to carry out the

motor imagery task corresponding to the cue in the form of an

arrow pointing either to the left (left hand, class 1), right (right

hand, class 2), down (foot, class 3), or up (tongue, class 4). Refer

Brunner et al., 2008 for the detailed explanation.

B. Data Preprocessing. The EEG signals were bandpass-filtered

between 5 Hz and 30 Hz covering l (8–13 Hz) and b (14–30 Hz)

rhythms that are known as related to motor imageries. We then applied

small Laplacian derivation calculated by subtracting four surrounding

channels with weights equal to the central one, to remove artifacts and

noise. In this article, as we are interested in the selection of the fre-

quency bands related to motor imagery classes, we considered all

channels. Samples in between 0 s and 1 s before the cue-onset and

those in between 0.5 s and 2.5 s after the onset of the stimulus, respec-

tively, were used for baseline and feature extraction for both training

and evaluation. The first 0.5 s period after the cue-onset is excluded as

it contains the spontaneous responses to the visual stimulus.

IV. PROPOSED METHOD

A. Event-Related Brain Dynamics Analysis. In this article,

we use an ERSP, a generalization of the ERD/ERS, to measure the

event-related brain dynamics for the analysis of time-locked EEG

spectrum induced by motor imagery. An ERSP measures dynamic

changes of EEG signals evoked by an experimental stimulus such as

motor imagery as a function of time in the broadband frequency spec-

trum (Makeig, 1993). The spectral changes involved in motor image-

ries are more than one frequency or frequency bands depending on the

subjects and the stimuli. This motivates us to analyze a full-spectrum

ERSP and find informative frequency bands on brain dynamics rather

than considering the predefined and fixed narrow-band ERD/ERS.

Here, we briefly introduce a method to compute an ERSP related

to an experimental event from a chunk of EEG data corresponding

to that event. The spectra of the baseline EEG immediately preced-

ing each stimulus is first calculated. Next, we divide the EEG sig-

nals of the kth trial into segments with a fixed-length overlapping

sliding window. Sample points of each segment in a window of the

cth channel are transformed into a frequency domain, here we use a

complex morlet wavelet, yielding spectra Sci;k f ; tð Þ where f and t
denote the frequency and time index, respectively, and i is a class

label. Then, we normalize the power spectra by dividing their re-

spective mean baseline power spectra as follows:

Ŝci;k f ; tð Þ ¼
Sci;k f ; tð Þ
���

���
2

Bc
i;k fð Þ

���
���
2

ð1Þ

where Sci;k f ; tð Þ
���

���
2

represents power spectra of the cth channel at the

frequency f and the time point t during i class motor imagery, and

Bc
i;k fð Þ

���
���
2

is the mean power spectra of the baseline summed over

time points. We finally compute the average of the normalized

response transforms for the K trials in each class producing an aver-

age ERSP in a time-frequency domain.

ERSPci f ; tð Þ ¼ 1

K

XK
k¼1

Ŝci;k f ; tð Þ ð2Þ

B. Channel-Frequency Map. The ERSP measures the brain dy-

namics of each channel independently. However, due to the nature of

EEG measurement, neighboring electrodes may have common sources

and spectral attributes that contribute to measured EEG signals. We

combine the multichannel distributed ERSPs into a matrix by concate-

nating the time-domain averaged out ERSP of each channel as follows

CFMi C;Fð Þ ¼ X1
i ; . . . ;X

c
i ; . . . ;X

C
i

� � ð3Þ

Xc
i ¼

1

T

XT
t¼1

ERSPci f ; tð Þ ð4Þ

where C and F denote the number of channels and the size of fre-

quency components of interest. We call the matrix in Eq. (3) a

Figure 2. Experimental setup. Montage of the 22 electrodes (left) and timing scheme of the paradigm (right) (Brunner et al., 2008).
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channel-frequency map (CFM). Figure 3 shows examples of the

CFM for subjects 1 and 3. The Xi
c in Eq. (4), a time-domain aver-

aged ERSP of the cth channel, represents the mean amplitude of the

ERD/ERS in an individual frequency component for the cth
channel.

Unlike the P300-based BCIs (Salvaris and Sepulveda, 2009) or

steady-state visual evoked potential-based BCIs (Cecotti, 2010),

motor imagery-based BCIs modulate brain signals spontaneously.

That is, it is highly unpredictable when the target-EEG signals are

evoked. This unpredictability makes it hard to extract meaningful

features, which results in a failure to build a classifier of good per-

formance. From this point of view, the Xi
c defined in Eq. (4) allows

us to find an informative frequency component by comparing the

weight of each frequency component.

We compute the weight of the specific frequency component f0 by
normalizing the sum of the squared CFMi over the channels with the

sum of the squared CFMi over both channels and frequencies as follows:

wi f
0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c CFMi c; f 0ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f

P
c CFMi c; fð Þ2

q ð5Þ

Here wi (f
0) can be considered as an intensity of the ERD/ERS for

the frequency component f0. If an ERD/ERS weight is larger than a

threshold, we believe that the corresponding frequency component

is informative for ith class and include it in the set of the selected

frequency components SFi as follows:

SFi ¼
[
f

wi fð Þ > dfi

� �
8f 2 1; 2; . . . ;Ff g ð6Þ

where di
f denotes a threshold, which in our experiments, we set as

the mean of weights.

When consecutive frequency components are selected in Eq.

(6), they compose a frequency band in the rest of our system. That

is, the selected standoff frequency components or consecutive fre-

quency bands can be considered as the filter bank in (Chin et al.,

2009) but with different bandwidths and removal of uninformative

frequency components. It should be noted that the proposed method

of frequency bands selection is a generic new technique and by no

means limited to the motor imagery-based BCI applications.

C. Feature Extraction and Classification Methods. For

each of the selected frequency bands, we build an independent clas-

sification stream. In each stream, we first apply a bandpass filter

over the range of the corresponding frequency bands for all chan-

nels except the EOG. We consider the sample points of the interval

between 0.5 s and 2.5 s after onset of the stimulus. We then apply

the CSP algorithm (Ramoser et al., 2000) using a one-versus-the-

rest strategy to find optimal spatial filters. The number of spatial fil-

ters is set to 6 empirically. Once the set of spatial filters has been

determined, we apply them to the training and test sets. We extract

feature vectors of the logarithm of the variances on the spatially

and spectrally filtered output signals.

The feature vectors are then transformed by a linear discriminant

analysis, more specifically multiple discriminant analysis (Duda et al.,

2001), for the increase of discriminability among classes. A SVM,

which has proved to perform strongly in a number of real-world prob-

lems including BCI (Lotte et al., 2007; Rakotomamonjy and Guigue,

2008), is trained with the transformed data. Similar to the CSP algo-

rithm, we train the SVM with a one-against-all approach.

As we have multiple streams, each of which may produce an in-

dependent class label for the given EEG data, it needs to make a de-

cision based on the resulting labels. We propose a two-step decision

strategy. The first step is based on a voting method as follows:

v̂ ¼ argmax
v

VðvÞ ð7Þ

where V(v) represents the number of classifiers that output the class

label v for the given EEG data. If there is a unique bin that receives

the largest votes from the SVMs, we then classify the input EEG

into the corresponding label without proceeding to the second step.

Or, as a second step, we consider the confidence of each SVM. That

is, if more than two classes have the same maximum votes, we

choose the class label to which a distance from the given feature is

the largest:

Figure 3. Examples of the channel-frequency map (CFM) for subject 1 (left) and subject 3 (right). The color-coded values represent a time-do-

main averaged out ERSP of each channel meaning ERD (blue) or ERS (red). The online color version provides a clearer view. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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î ¼ argmax
i

DðiÞ iff v̂j j � 2; where i 2 v̂ ð8Þ

where D(i) denotes a maximal distance between the feature vector

and the hyperplane of a classifier that output a class label in v̂, and
v̂j j is a number of elements in the set v̂. This strategy is from the ra-

tionale that the larger the distance from the hyperplane the more

confident belonging to the class.

Figure 4c shows the operational flow of the proposed method for

four motor imagery classifications, where the subscripts l, r, f, and t
denote the number of frequency bands for the classes of left-hand,

right-hand, foot, and tongue, respectively. As we choose frequency

bands of interest for each class individually, there exist l 1 r 1 f 1
t independent streams. At the end of the system, we combine the

outputs from the multiple stream SVM classifiers as depicted in

Eqs. (7) and (8) to decide a class label for an input EEG.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Designing Competing Models. To show the effectiveness

of the proposed method, we build three competing models: base-

line, Chin et al.’s filter bank, and the proposed frequency selection.

Figure 4. Diagrams of the competing models. (a) Baseline model (top), (b) filter bank based model (middle), and (c) the proposed model

(bottom). The subscripts l, r, f, and t denote the number of frequency bands for the classes of left-hand, right-hand, foot, and tongue motor im-

agery, respectively. Frequency band (FB), frequency selection (FS), common spatial pattern (CSP), and multiple discriminant analysis (MDA).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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While the baseline model deals with EEG signals bandpass-filtered

between 5 Hz and 30 Hz covering l and b rhythms, we should con-

sider multiple bands for the other two models. In the filter bank and

the proposed models, the ensuing operations are applied for each

band individually, but we produce one class label by considering

the outputs from multiple classifiers as explained in Section IV at

the end of the system.

The CSP algorithm is applied to the preprocessed and bandpass-

filtered EEG data to find optimal spatial filters. In our experiments,

the number of spatial filters was set to 6 empirically, and applied

equally to all the competing models. Feature extraction based on a

multiple linear discriminant analysis and a classification with

SVMs is followed. We used a nonlinear SVM with a Gaussian ra-

dial basis function. The diagram of the two competing models is

presented in Figures 4a and 4b. Although a system flow of both the

filter bank in Figure 4b and the proposed method in Figure 4c looks

similar, they are different in a way of selecting each frequency

band. The frequency bands of a class can be in discord with those

of others in the proposed method. In the filter bank model, we set

the size of a filter bank to 4 Hz following Chin et al.’s (2009) work.

B. Cross-Validated Results. We performed cross validation for

each subject by randomly selecting training data and using the rest

for validation. We have distinct frequency bands for each class as

illustrated in Figure 5. Although they are mostly ranging between 6

Hz and 20 Hz, it is clear that the bands are variable among classes

and subjects. Figure 6 presents the averaged performances from 10

repetitions with the dataset during session 1 according to the

changes of the training set size from 10 to 60. The performances are

substantially heterogeneous among subjects, ranging from 31.67%

Figure 5. Selected frequency bands for each subject (L, left-hand; R, right-hand; F, foot; T, tongue).

Figure 6. Cross-validated performances of the three competing methods for all subjects according to the changes of the training set size dur-

ing session 1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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for subject 5 to 91.04% for subject 3 with 60 training trials per task.

The proposed method showed the highest accuracy for seven out of

nine subjects, whereas the filter bank-based model resulted in less

than 1% superior to the proposed method for subject 2 and subject

6. A summary of the cross-validated performances showing the su-

periority of the proposed method is presented in Table I with stand-

ard deviations and the grand mean of 9 subjects for the competing

methods.

C. Performances in Session-to-Session Transfer. The goal

of the BCI Competition IV on the dataset II-a was to evaluate clas-

sification algorithms based on session-to-session transfer rate, using

session 1 dataset for training and session 2 dataset for evaluation. In

Table II, we summarize the performances of three competing meth-

ods. The proposed method outperformed the other methods for all

subjects except for subject 2 when we used the EEG data of session

1 for training and the EEG data of session 2 for evaluation, and vice

versa. From the comparison of the performances between the filter

bank method and the proposed method, for which we have applied

the same approach to making a decision, i.e., voting strategy from

multiple classifiers, we can say that the proposed frequency bands

selection has a more impact on classifying motor imagery than the

method of building classifiers.

We also compare the best performances obtained by the pro-

posed method with the performances of the three best competitors

in the competition and other methods recently published in (Gouy-

Pailler et al., 2010). For a fair comparison with the other methods,

we use the criterion of the kappa score (Cohen, 1960), used in the

competition. Table III summarizes the results. We can see that the

proposed frequency bands selection method proved the best four

out of nine subjects and presented the second highest kappa score

on average among seven different methods. We visually investi-

gated the ERSPs for the analysis of the low performance of subjects

2, 5, and 6. When compared with those of the subjects for whom

the proposed method showed high accuracy, the ERD/ERS in ERSP

of these three subjects presented relatively small values. The pro-

posed method failed to determine the informative frequency bands.

Here, we should also note that the first and third best competitors

applied bandpass-filtering and linear regression, respectively, to

remove the artifacts in the dataset.

VI. CONCLUDING DISCUSSIONS

Brain rhythms related to the imagination of body-parts movement

are highly variable over different stimuli and subjects. Designing a

motor imagery-based BCI system requires a time-consuming pro-

cess to select frequency components for each set of mental tasks to

be classified and for each subject from visual inspection. Unlike

previous approaches of selecting frequency bands manually or gen-

erally setting a broad band, we propose a data-driven method of

subject and class specific frequency band selection for multiclass

motor imagery classification with the time-frequency map analysis

using ERSP (Makeig, 1993). In each of the selected frequency

bands, the classification process operates individually and a label

for an input EEG is determined by considering the outputs from

multiple classifiers together at the end with a two-step decision

strategy.

We demonstrated the performance of three competing methods

on a public dataset of BCI Competition IV II-a of four motor

imageries: left-hand, right-hand, foot, and tongue. The performance

of the proposed method outperformed a baseline model that consid-

ered a wideband (between 5 Hz and 30 Hz) EEG and a filter bank-

based model that followed Chin et al.’s (2009) approach with non-

linear SVMs. Apart from the higher accuracy in classification, the

proposed method has an advantage of eliminating a time-consuming

calibration process of determining frequency bands for each

subject.

From the visual inspection of the proposed CFM, we can clearly

see that there exist class specific frequency bands—highly respon-

sive to the corresponding motor imagery—and subject specific

bands, different bands for different subjects in the same motor

imageries. Finally, we would like to remark that the proposed CFM

and multiple stream-based classification methods are not limited to

the motor imagery classification, but also applicable to other EEG-

based brain computer interface, such as P300-based word speller.

Table I. Summary of cross-validated performances with 60 training data

per task for each method on a dataset of session 1.

Baseline Filter Bank Proposed

Mean (%) 61.92 62.64 66.43

Standard deviation (%) 17.66 18.69 19.83

Table II. Mean classification rate (%) of three competing methods in terms

of session-to-session transfer.

From Session 1 to Session 2 From Session 2 to Session 1

Baseline

Filter

Bank

Proposed

Method Baseline

Filter

Bank

Proposed

Method

Subject 1 67.26 66.25 75.66 60.52 63.51 76.11
Subject 2 41.32 37.26 40.63 29.51 39.24 32.92

Subject 3 72.47 75.31 79.86 66.60 70.94 80.42

Subject 4 45.80 50.28 56.74 37.95 45.17 45.38
Subject 5 33.44 34.97 36.53 29.17 34.03 42.29

Subject 6 37.36 36.77 37.74 36.15 44.83 46.30

Subject 7 64.24 66.53 80.45 54.72 65.38 72.54

Subject 8 69.79 72.61 79.24 52.47 61.60 62.60
Subject 9 67.29 67.71 75.03 65.87 71.69 73.82

Mean (%) 55.44 56.41 62.43 48.11 55.15 59.15

The training set size was set to 60 trials per motor imagery task.

Table III. Kappa scores of the best performance of the proposed method

and three best competitors in BCI Competition IV (2008) and the methods

of joint approximate diagonalization (JAD), common spatial pattern (CSP),

and multi-segment JAD (MSJAD) presented in Gouy-Pailler et al.’s work

(2010).

Proposed

Method

Three Best Competitorsa Gouy-Pailler et al. (2010)

1st 2nd 3rd JAD CSP MSJAD

Subject 1 0.71 0.68 0.69 0.38 0.65 0.52 0.66

Subject 2 0.31 0.42 0.34 0.18 0.40 0.39 0.42

Subject 3 0.75 0.75 0.71 0.48 0.77 0.67 0.77
Subject 4 0.47 0.48 0.44 0.33 0.50 0.50 0.51

Subject 5 0.19 0.40 0.16 0.07 0.44 0.49 0.50

Subject 6 0.20 0.27 0.21 0.14 0.19 0.18 0.21

Subject 7 0.78 0.77 0.66 0.29 0.25 0.26 0.30

Subject 8 0.77 0.75 0.73 0.49 0.72 0.57 0.69

Subject 9 0.73 0.61 0.69 0.44 0.50 0.40 0.46

Mean 0.55 0.57 0.51 0.31 0.49 0.44 0.50

aThe results as well as the methods produced them were detailed on the website of
BCI Competition IV (2008) (http://www.bbci.de/competition/iv/results/index. html).
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