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a b s t r a c t

In this paper, we propose a new method for recognizing hand gestures in a continuous video stream

using a dynamic Bayesian network or DBN model. The proposed method of DBN-based inference is

preceded by steps of skin extraction and modelling, and motion tracking. Then we develop a gesture

model for one- or two-hand gestures. They are used to define a cyclic gesture network for modeling

continuous gesture stream. We have also developed a DP-based real-time decoding algorithm for

continuous gesture recognition. In our experiments with 10 isolated gestures, we obtained a

recognition rate upwards of 99.59% with cross validation. In the case of recognizing continuous stream

of gestures, it recorded 84% with the precision of 80.77% for the spotted gestures. The proposed DBN-

based hand gesture model and the design of a gesture network model are believed to have a strong

potential for successful applications to other related problems such as sign language recognition

although it is a bit more complicated requiring analysis of hand shapes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since Johansson’s work on human motion perception and
analysis [1], many researchers in computer vision have tried to
analyze and understand human motion in video. Aggarwal and Cai
reviewed literatures related to human motion analysis. In the
paper, they divided human motion analysis into three areas, i.e.
body structure analysis, tracking, and recognition, and addressed
the relationships among these areas [2]. In this paper, we focus on
the recognition of human hand motions occurring in a video
sequence. Pavlovic et al. [3] surveyed problems and issues in
visual hands gestures. To date a large body of literatures focuses
on isolated hand gesture recognition [4–10], whereas only a small
number of works dealt with detecting and recognizing hand
gestures from video frames [11–14].

A hand gesture can be described by a locus of hand motion
recorded in a sequence of signal frames. To model these signals
hidden Markov models (HMMs) have been widely accepted as the
choice of the models with applications to video analysis problems,
such as recognizing tennis motions [15], identifying humans by
their gaits [16,17], browsing PowerPointTM slides using hand
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commands [11] and so on. Brand et al. suggested a coupled HMM
that combines two HMMs with causal, possibly asymmetric link to
recognize three T’ai Chi gestures [4].

Recently, there has been an increasing interest in a more
general class of probabilistic models, called the dynamic Bayesian

network (DBN), which includes HMMs and Kalman filters as
special cases. DBN is a generalized version of the Bayesian network
(BN) with an extension to temporal dimension. Du et al. defined
five classes of interactions that could happen between two
persons and developed a DBN-based model which took local
features such as contour, moment, height and global features such
as velocity, orientation, distance as observations [18]. Park
et al. employed a DBN to analyze the change of the poses of body
parts and recognized the interaction between two persons [19].
Avilés-Arriaga et al. extracted the region and the center of a hand
as input features and used a näive DBN to recognize 10 one-hand
gestures [20].

Early on, Pavlovic proposed the use of DBN for gesture
recognition that can be seen as a combination of an HMM and a
dynamic linear system [5]. Wilson also presented modeling
techniques to adapt gesture models using the DBN scheme [6].
Yang et al. used time-delayed neural network to analyze feature
vectors from hand trajectories [7]. With 40 different isolated
signs they achieved a recognition rate up to 96.21%. Nefina
et al. compared several different methods of audio-visual speech
recognition and suggested the use of coupled HMMs and factorial
HMMs by showing that coupled HMMs outperformed all the other
models in the performance of recognition [21]. The coupled HMM
will be compared with the proposed model in our experiments.
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These previous works considered recognizing isolated gestures
rather than spotting gestures in a continuous stream of motion.
León et al., on the other hand, used a sliding window of 10 frames
to represent the local trajectory with 10 observation nodes in a BN
[13]. They showed that, even though some of the observations
were missing, the method could still distinguish similar gestures
such as ‘‘Good-bye’’ from ‘‘Move-Right.’’ Shi et al. considered to
segment and recognize human activities from a continuous action
stream and presented a semi-Markov model [22]. Voglar and
Metaxas proposed a framework for recognition of an American
sign language based on an HMM. In their experiment, they
extracted the signer’s arm and hand motion information using
three video cameras and an electromagnetic tracking system. The
method achieved a recognition rate of 94.5% in isolated single
signs and 84.5% in whole sentences [12]. Recently, Yang et al.
proposed a threshold model which extends conventional condi-
tional random fields model to dealing with the task of spotting and
recognizing American signs in a set of vocabulary [23].

In this paper, we propose a dynamic Bayesian network model
for hand gesture recognition that can be used to control media
players or slide presentation. Unlike previous systems the
proposed model accepts both one and two hand gestures. Given
a video sequence, it captures the hand motion trajectories and
relations to the face. They are converted to time series signals, and
analyzed by gesture models. In experiments with 10 isolated
gestures, the proposed model achieved a recognition rate of
99.59% with cross validation. In addition, a more practical problem
of continuous gesture recognition is addressed based on a cyclic
spotting network connecting gesture DBNs. To simultaneously
recognize gestures and detect the start and end points of
embedded gestures in a sequence of motion signals we developed
a Viterbi-like dynamic programming method. A test on long videos
showed 84% in recall and 80.77% in precision.

In the rest of the paper, we will define 10 hand gestures and
describe the methods of detecting and tracking hands, and
describe features in Section 2. The proposed hand gesture
recognition model and the inference and learning algorithm are
explained in Section 3. Section 4 presents a circular network
model for continuous gesture motion spotting and recognition for
Fig. 1. Ten hands gestures: (a) open a file (OP), (b) close a file (CL), (c) play (PL), (d

(g) 10 seconds forward (TF), (h) 10 seconds backward (TB), (i) fast forward (FF), and (
practical applications. The experimental results are presented and
analyzed in Section 5. Finally Section 6 concludes the paper.

A preliminary partial version of this paper appeared in [24,25]
with limited scope of isolated gesture classification. The main
contribution of the current work compared to the previously
published conference papers is that it analyzes the results of
isolated gesture recognition by decoding the hidden states in
DBNs. We then further extend the DBN-based hand gesture model
to deal with continuous gestures stream by designing a gesture
network model and developing a Viterbi-like dynamic program-
ming method for more practical applications. The proposed
gesture network model can detect the start and end points of
the embedded meaningful gestures in a video stream. We also
demonstrate many experimental results both on isolated and
continuous gestures recognition.
2. Hands tracking and feature extraction

Successful dynamic hand gesture recognition requires accurate
location of hands and face in space-time. The result of this step
influences greatly on the performance of the target system.

2.1. Hand gesture classes

For potential applications to controlling media players or slide
presentation, we define 10 different hands gestures including five
two-hand gestures and five one-hand gestures as shown in Fig. 1.
Each black dot in the figure represents the starting position of the
hand and each directed curve the motion trajectory of the hands. In
the case of one hand gestures the remaining hand not participating
in the gesture may or may not appear in video frames.

2.2. Tracking

Hand detection and tracking in video, though simple, is by no
means an easy task due to noise, uncertainty, and the variation in
illumination conditions [26].
) pause (PA), (e) move to the last frame (ML), (f) move to the first frame (MF),

j) fast rewind (FR).
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In this work, we employ two skin models for hands and face
detection. One is the simple color range model widely used in the
YIQ color space. It just limits the range of pixel values in that
space. The other is the HSV color histogram built from the pixels in
the face region obtained by the Haar-like face detector [27]. The
latter model can reflect the current lighting conditions and the
characteristics of the subject’s skin color. An input pixel is
regarded as a skin pixel if its likelihood of skin color in the
histogram is greater than a given threshold [28].

Despite conceptual simplicity, tracking hands in video is not
simple because each hand may overlap with a face or other hands.
We tackle this problem by adapting the method Argyros et al. [29].
Here each blob of a face and hands is described by a Gaussian
template where the mean represents the location of the face or
hands (Fig. 2). Then by a simple linear extrapolation from the
motion vector we can predict each blob in the next frame. When
an overlap occurs among blobs, it can be solved by the following
rules:
�

Fig
me

(b)

pro

vec
Rule 1: If a skin pixel of a blob is located within 95% confidence
interval of a Gaussian distribution then this pixel is considered
to be supporting the Gaussian.
Frame 10 Frame 13Frame 11 Frame 12

. 2. A hand tracking example by two different methods: (a) Argyros et al.’s

thod based on prediction using the velocity of the previous two frames,

optical flows between the previous frame and the current frame, and (c) the

posed method based on the prediction using the average of the optical flow

tors.

Fig. 3. Features: (a) 17 direction codes for hand motions, (b) hand
�
 Rule 2: If a skin pixel does not support any of the Gaussians, or
it is outside the 95% confidence interval of all the Gaussian
distributions, then it is assigned to one of the Gaussians that is
closest to it.

Here, the confidence of a pixel for a Gaussian can be replaced by
the Mahalanobis distance from the mean mk of Gaussian k:

DðxÞ ¼ ðx�mkÞ
TR�1

k ðx�mkÞ ð1Þ

where x is the coordinate of a skin-pixel and Rk is the covariance
of the Gaussian representing the k-th blob.

Unlike Argyros’ use of velocity for linear prediction, we propose
the use of optical flow [30]. One problem of using velocity is that it
often fails to track hands when the velocity changes abruptly.
Whereas the optical flow measures the motion explicitly across
frames and can still succeed in tracking regardless of past history.

The actual prediction is made by m0k ¼ mkþv, where v is mean of
the optical field vectors given by

v¼
1

N

XN

i ¼ 1

fðiÞ

and fðiÞ ¼ ½fxðiÞ,fyðiÞ�
T denotes the i-th flow vector and N the number

of flow vectors associated with the k-th blob.
For comparison Fig. 2 shows an example of hand tracking using

velocity and optical flow. Fig. 2(b) shows optical flows between
the consecutive frames which reflect the motion of the hand
across the frames. Initially, the hand was stationary and the
velocity-based method predicted for the hand to stay at the same
position with no motion. Therefore, in Fig. 2(a), the velocity-based
hand tracker without an explicit motion filtering consistently fails
to track the accurate position of the hand. The error accumulates
and finally in the frame 13 the Gaussian corresponding to the hand
is out of place significantly. But the optical flow-based method
tracks the hand correctly by measuring the motion explicitly as
exemplified by Fig. 2(c).

2.3. Feature extraction

Among the variety of possible features, the most important
information about a gesture will be the motion of hands. The
motion can be described by the trajectory of a hand in space over
time which in turn is represented by a sequence of positions of the
hand xt, t¼1,y . The location xt of the hand at time t has been
estimated by the mean of the Gaussian fitting the corresponding
blob as shown in Fig. 2. Each pair of successive hand locations
defines a local motion vector. Then we can represent the whole
motion trajectory by a sequence of motion vectors each of which is
in turn encoded by a direction code using the scheme as shown in
–hand positional relation, and (c) face–hand positional relation.
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Fig. 3(a). The central code ‘0’ denotes ‘no motion’ occurred. Given a
video, we extract two chain codes one for each hand.

With the separate chain code for each hand, ambiguities can
arise between gestures. For example, when there are two hands in
a frame and the user is making one-hand gestures such as FF in
Fig. 4(a) and FR in Fig. 4(b), the resulting chain codes are
indistinguishable from those of the two-hand gestures ML in
Fig. 4(c) and MF in Fig. 4(d), respectively. It is because each of the
two pairs have the same chain code sequences as shown in
Figs. 4(e) and (f). To avoid the ambiguities incurred by
representing the motion using only the chain code, we introduce
two more features: the relative position of the two hands
(Fig. 3(b)) and the position of the each hand relative to the face
(Fig. 3(c)). The code ‘0’ implies that two hands or a hand and a face
are overlapping. The hand–hand relation and hand–face relation
can also compensate for the effects of the small changes caused by
user’s unconscious movement or by any unstable results from the
image processing. The errors so made could affect the output code
and ultimately the system performance significantly without any
complementary measures.
Fig. 4. Ambiguities may occur when only chain codes are used: (a) FF gesture,

(b) FR gesture, (c) ML gesture, (d) MF gesture, (e) the chain-coded trajectory of

(a) and (c), and (f) the chain-coded trajectory of (b) and (d).

1tO −

1tX − tX 1tX +

tO 1tO +

Fig. 5. Graphical representation of hidden Markov models: (a) standa
3. Gesture modeling

3.1. Dynamic Bayesian network: DBN

Although an HMM [31] is a very useful tool for modeling
variabilities in time series signals, its power is limited to a simple
state space with a discrete hidden variable at a time. Suppose that
there are more than two hidden variables, each representing an
independent component, but those processes interact and are
correlated. If we represent the system with a single hidden
variable using the standard HMM of Fig. 5(a), then the state space
of the hidden variable will be as big as the product of the size of all
those hidden variables. Then as the number of the variables
increases we will need an exponential amount of data for reliable
estimation of model parameters.

The coupled HMM is an HMM variant tailored to represent the
interaction of two independent processes [4]. It is essentially two
HMMs coupled between the state variables across the two HMMs
as shown in Fig. 5(b). In the figure, the gray square nodes denote
hidden state variables and the white circle nodes observation
variables. Although useful for modeling simple interacting
processes, this model does not have room for common hidden
variables which are believed to be shared between two variables.

The dynamic Bayesian network (DBN) [32] is a generalized
framework of HMM/CHMM and Bayesian network (BN) [33]. With
an appropriate design, it can make up for the weaknesses of the
HMMs by factorizing the hidden variables into a set of random
sub-variables. It is a model for computing effectively the joint
probabilities of a set of random variables. The inference algorithms
developed for Bayesian networks (BNs) can be applied to DBNs
directly by taking advantage of the temporal progression.
3.2. Proposed model architecture

The 10 hand gestures defined in Section 2.1 include bimanual
gestures as well as monomanual gestures. We are proposing a new
design of DBN which has three hidden variables and five
observable variables. The two hidden variables X1 and X2 model
the motion of the left and the right hand, respectively, and each is
associated with two observations of the features of the corre-
sponding hand’s motion and the position relative to the face. The
third hidden variable X3 has been introduced to resolve the
ambiguity between similar gestures. It models the spatial relation
between hands.

Suppose that the relative position of two hands has changed
from Figs. 6(a) to (b). In this case, when the left hand is lowered,
we can infer that the right hand has been either raised or
stationary as shown in Fig. 6(c). Similarly when the right hand is
raised, the left hand has been either lowered or stationary as
1
tO

1
1tO −

1
1tO +

2
tO

2
1tO −

2
1tO +

2
1tX −

2
tX

2
1tX +

1
1tX −

1
tX

1
1tX +

rd hidden Markov model, and (b) coupled hidden Markov model.
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Fig. 6. Changes of the relative position of two hands: (a) the initial position of the

hands, (b) after a motion, (c) the left hand lowered, and (d) the right hand raised.
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Fig. 7. The proposed dynamic Bayesian network model for hands gestures.
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shown in Fig. 6(d). This means that given the value of the node X3,
i.e. the current relative position between two hands, the two
nodes X1 and X2 are conditionally dependent, i.e.

X1 X2jX3: ð2Þ

Using the first-order Markov assumption to simplify the
motion dynamics we propose a new hands gesture model as
shown in Fig. 7, with hidden variables in gray square nodes and
observable variables in white circle nodes. In the figure, O1 and O3

denote the chain code of left and right hand motions, O2 and O4 the
spatial relation between each hand and the face, and O5 the spatial
relation between two hands. In this model, the time dependency
of the hidden variable X3, that is, � � �-X3

t�1-X3
t -X3

tþ1- � � �, is
considered to implicitly capture the correlation between two
hidden variables X1 and X2 as was done by the pair (X1, X2) in the
coupled HMM. This also simplifies the proposed model and
relieves it of the complication of the coupled HMM.
3.3. Inference and learning

One of the advantages of using BNs is that the graphical
structure representing the conditional independence among
variables allows us to compute the joint probability of a subset
of variables very efficiently. The inference over a DBN is to
compute the marginal probability PðXijO1:tÞ of hidden variables Xi

given an observation sequence O1:t ¼O1O2 . . .Ot.
The joint probability of variables in a BN can be factored into a

product of local conditional probabilities one for each variable
through conditional independencies or d-separation [33]. The full
joint probability for the DBN in Fig. 7 can be computed by

PðX1:3
1:T ,O1:5

1:T Þ ¼ PðO1:5
1:T jX

1:3
1:T ÞPðX

1:3
1:T Þ ¼ PðX1

1 ÞPðX
2
1 ÞPðX

3
1 jX

1
1 ,X2

1 Þ

�
YT

t ¼ 2

PðX1
t jX

1
t�1ÞPðX

2
t jX

2
t�1ÞPðX

3
t jX

3
t�1,X1

t ,X2
t Þ

�
YT

t ¼ 1

PðO1
t ,O2

t jX
1
t ÞPðO

3
t ,O4

t jX
2
t ÞPðO

5
t jX

3
t Þ

where

X1:3
1:T ¼

X1
1

X2
1

X3
1

2
64

3
75 � � �

X1
T

X2
T

X3
T

2
64

3
75 and O1:5

1:T ¼

O1
1

^

O5
1

2
64

3
75 � � �

O1
T

^

O5
T

2
64

3
75

Learning in a DBN is the task of finding the optimal parameters
Ŷ that computes the maximum likelihood over the training data,
i.e. Ŷ ¼ argmaxYPðO1:5

1:T jYÞ. Here, the set of parameters includes
initial state probabilities ðpÞ, state transitions probabilities (A), and
output probabilities (B) just like those of HMM. Unlike the HMM,
however, the DBN has many hidden variables for the distributed
representation.

The proposed DBN includes three hidden variables and thus
can be trained by exploiting the EM algorithm [34]. In order to
determine the parameter values what we need to know are only
the sufficient statistics for the variables. We can obtain them by
means of the interface algorithm [32]. The update formulae for the
parameters and their meaning in the perspective of maximum
likelihood method are given in Appendix A.
4. Continuous gesture recognition

4.1. Design of gesture network

Isolated gesture recognition, although simple and easy to
analyze, falls short of application to practical situations as it
requires the knowledge of the start and the end of gesture motion.
In its most general setting, a human motion is viewed as a
sequence of mostly non-gestures which carry no useful informa-
tion and occasional gestures of interest. A non-gesture is any
meaningless pattern that fills the gap between meaningful
gestures. Following the convention in other fields, a non-gesture
will now be called a filler or a garbage [11,16,23].

Given the definition of a filler, the whole continuous motion
can now be described as an alternating sequence of fillers and
gestures. And it can be modeled by a straightforward transla-
tion into an alternating sequence of a filler model and gesture
models:

oHand Motion4 :¼ oFiller4 � ðoGesture4 � oFiller4 Þþ

oFiller4 :¼ Filler

oGesture4 :¼ OpenjClosejPlayjPausej

Move to the First FramejMove to the Last Framej

10 Seconds Forwardj10 Seconds Backwardj

Fast ForwardjFast Rewind

where the oFiller4 and oGesture4 denote a filler and a gesture
DBN, respectively, and ‘�’ and ‘+ ’ denote concatenation and
repetition, respectively.

One effective realization of the above whole motion model is a
cyclic network of gesture DBNs. It is similar to that of recognizers
for concatenated digits or phonemes [35]. In our case, it is a
concatenation of gesture DBNs in parallel to one or more fillers,
and then from the filler(s) back to the gesture models as shown in
Fig. 8. The introduction of dummy nodes in Fig. 8, the start node ‘S’
and the final node ‘F’ in traversing the network, makes modeling
and inference conceptually simple. The link from a dummy node
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Fig. 8. Cyclic network of gesture DBNs for concatenated gestures.
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to the hidden node X1 of each DBN enables the propagation of the
likelihood from the dummy node to the following filler or gesture
DBNs. It does not matter which of the three hidden nodes of a DBN
has a link from the dummy node, but only one of them must have
it. Otherwise, the likelihood from a dummy node will be
considered more than once in the computation of network
search. A full explanation will be given in the forthcoming
subsection.

4.2. Algorithm of continuous gesture recognition

Gesture recognition in general involves the simultaneous
problems of finding the boundaries (the start and the end points)
of target gestures and determining their class label. To tackle this
problem we exploit the method of dynamic programming (DP)
search [36]. It tries to find the best alignment between a given
input sequence and the complete state sequence in which each
desired gesture model gives the greatest likelihood for the
corresponding segmental pattern in the motion sequence. Then
the answer lies in the ‘‘best’’ model/state sequence that jointly
maximizes the likelihood along with the segmental sequence.

Let G¼ G1G2 . . .GK , KZ1 be a sequence of gesture and filler
DBNs for a given input frame sequence O¼O1O2 . . .OT . Note that K

is not known a priori. The goal is to find the best alignment to the
best path Ĝ that maximizes the likelihood from the network by
exploiting the method of DP search. Let one possible segmentation
of O aligning to G be

S¼ S1S2 . . . SK ¼ ðsð1,t1Þ, sðt1þ1,t2Þ, . . . , sðtK�1þ1,tK ÞÞ

where sðtk�1þ1,tkÞ ¼Otk�1þ1 . . .Otk
denotes a segment aligned to Gk

and 1¼ t0ot1o � � �otK ¼ T. Then the problem can be formulated
as computing

PðOjNetworkÞ9max
K ,G

PðO,GjNetworkÞ ¼max
K ,G,S

PðS,GjNetworkÞ ð3Þ

where

G¼ G1G2 . . .GK , KZ1 and

Gk ¼
a gesture model if k¼ even

a filler model otherwise

�

This is a joint optimization task of computing the maximum
likelihood for the given observations by simultaneously determin-
ing the best number of gestures K, the best sequence of gestures G,
and the best alignment of O to G.

Now let us assume all the paths in the spotting network are
equally probable or we are using a uniform model. Then we can
write Eq. (3) as a simple product of the likelihood of individual
models in G:

PðS,GjNetworkÞ ¼ PðSjGÞPðGjNetworkÞ9
YK

k ¼ 1

PðSkjGkÞ ð4Þ

In this equation, we ignore the probability of gesture transitions,
i.e. the transition probabilities among hand gestures are uniform
over all the gestures. If we further apply the concept of Viterbi
path alignment (Sk, Qk) inside a model Gk, where Qk ¼

qðtk�1þ1,tkÞ ¼ qtk�1þ1 . . . qtk
is a legal state sequence within the

model Gk. Then we can write Eq. (3) as follows:

PðOjNetworkÞ9max
K ,G,S

PðS,GjNetworkÞ9max
K ,G,S

YK
k ¼ 1

max
Qk

PðSk,QkjGkÞ

" #

ð5Þ

Let us denote the current network node in path as grAfS,Fg and
another node that immediately precedes it as gl. The pair (gl, gr) is
connected via a set of parallel DBNs as shown in Fig. 8. You may
regard it as a conceptual link with a label of DBNs, e.g., a link from
node F to S. Let L(gl, gr) be a set of models (DBNs) in the path from
the node gl to gr. In addition, let us define the likelihood of initial
partial sequences of length t:

DtðgrÞ ¼ PðO1 . . .Ot ,q1 . . . qt ,qt-grjNetworkÞ

¼
Accumulated joint likelihood of the partial sequences O1 . . .Ot

and the best q1 . . . qt reaching the node gr at time t

 !

Utilizing the idea of the dynamic programming principle, we can
rewrite DtðgrÞ as a recurrence relation

DtðgrÞ ¼ max
ðgl,mÞ s:t: mA Lðgl,grÞ

Dt0 ðglÞ � Pðsðt0 þ1,tÞ,qðt0 þ1,tÞjmÞ,
t¼ 1, . . . ,T

grAfS,Fg
ð6Þ

where sðt0 þ1,tÞ ¼Ot0 þ1 . . .Ot and qðt0 þ1,tÞ ¼ qt0 þ1 . . . qt . This is
what we call the ‘global DP’ that performs a maximization at the
level of the network model. Note that 0rt0ot and t0 is to be
determined probabilistically within the local DP which computes
the second factor of the right hand side in Eq. (6) as described
below. This equation will be revisited after describing the local DP.

In Eq. (6), the likelihood was defined for the global dummy
nodes. Similarly, we can also define a similar measure for the
internal states (i, j, k) of each DBN as

dm
t ði,j,kÞ ¼Dt0 ðglÞ � Pðsðt0 þ1,tÞ,qðt0 þ1,t�1Þ,qt ¼ ði,j,kÞjmÞ

¼ max
ða,b,cÞ

dm
t�1ða,b,cÞ � Am

ai,bj,ck

� �
� Bm

i,j,kðOtÞ

¼
Accumulated joint likelihood of the partial sequences O1 . . .Ot

and the best q1 . . . qt where qt ¼ ði,j,kÞ in the DBN m

 !

for

t¼ 1, . . . ,T

m¼ any of the gesture and filler DBNs

ði,j,kÞ ¼ ðX1
t ,X2

t ,X3
t Þ, a state triple of state spaces

8><
>: ð7Þ

where the triple (i, j, k) represents a state described by the three
hidden variables in the DBN m and Am

ai,bj,ck and Bm
i,j,k(Ot) denote the

state transition ða,b,cÞ-ði,j,kÞ probability and the probability of
observing Ot at the state triple (i, j, k) in the model m, respectively.
This is the second recurrence relation called the ‘local DP’. It aims
at finding the best state transitions to a state triple (i, j, k) at time t

for the partial sequences O1 . . .Ot .
In the task of spotting and recognition in a video sequence, the

segmentation boundaries of gestures are not known a priori. Let us
consider a likely segment s(t, t+d) for any d40. At time t�1, the
likelihood of a model which represents the gesture being
completed will be high. During the global DP in Eq. (6), this
likelihood gets forwarded to some network node gl. Then the
decision as to picking the starting boundary of a new segment
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s(t, t+d) in the following model m is made by

dm
t ði,j,kÞ ¼maxfdm

t�1Am
11,11,11,Dt�1ðglÞ � 1g � Bm

1,1,1ðotÞ ð8Þ

where it is assumed that the DBN m has a left-to-right transition
topology and always starts from the state triple (1, 1, 1). Here the
two expressions in the brace correspond, in order, to the DBN itself
and a new transition into the DBN from outside implying a new
gesture (or a segment) begins at this point in time.

Now the description of the local DP is complete. Then the
global DP as shown in Eq. (6) is straightforward. Since the local
likelihood of the final state triple Em

¼(Nm,1, Nm,2, Nm,3) of the DBN
m is equal to the right hand side of Eq. (6) for the pair of m and gl,
where Nm,1, Nm,2, and Nm,3 represent the size of states on which
each hidden variable could take. Therefore the actual global DP is
given by

DtðgrÞ ¼ max
ðgl,mALðgl,grÞÞ

dm
t ðE

mÞ,
t¼ 1, . . . ,T

grAfS,Fg
ð9Þ

A complete description of all the variables employed in the
above description is given in Table 1. Refer to Appendix B for the
complete algorithm with an appropriate initialization and
backtracking for recovering the best estimate of the gesture
sequence.

In the local DP, three variables are maintained: the maximum
likelihood at each state triple dm

t ði,j,kÞ, the source state triple
cm

t ði,j,kÞ that contributes to the maximum likelihood, and the
elapsed time jm

t ði,j,kÞ within the model m. Whereas in global DP,
two variables are required: the likelihood of the best path reaching
the current network node DtðgrÞ and the gesture model that
forwarded the maximum likelihood. The pair of the gesture DBN
model’s label and the left network node gl is stored in CtðgrÞ. After
the forward pass, the algorithm traces back the current result of
forward pass to recover the best sequence of models starting from
the final node ‘F’ in Fig. 8. The backtracking is based on the
information about node transitions in Ct and the elapsed time of
the DBN model m in jm

t that evaluated the maximum likelihood at
time t.

If we analyze the computational complexity of the algorithm,
the majority of the computation is carried out in the local DP of the
innermost loop. Let the number of states for each variable X1, X2,
and X3 be n on average. Then the size of the state space becomes
N¼n3. Considering M possible gesture models including a filler
model, the time complexity for a whole sequence of observations
of length T is MN2T. If we employ the left-to-right topology, it
becomes linear in N.
Table 1
Description of the variables employed in the algorithm of continuous gesture recogni

Local DP m

(i,j,k)

Am
(ai,bj,ck)

Bm
(i,j,k) (Ot)

pm
ði,j,kÞ

dm
t ði,j,kÞ

cm
t ði,j,kÞ

jm
t ði,j,kÞ

Em

Global DP L(gl,gr)

DtðgrÞ

CtðgrÞ
5. Experimental results and analysis

5.1. Data description

The proposed method of gesture recognition is about statistical
models with numerous parameters. They must be trained from a
set of examples before being put to use. For each of the 10
gestures, we captured seven videos from seven different subjects
at different times, a total of 490 video sequences for training and
testing the baseline models. Another eight longer video sequences
which contain 50 gestures in total were prepared for an experi-
ment in continuous gesture recognition. All the videos were
captured using a small CMOS camera at 30 frames per second,
320�240 in size, and 24-bit colors. The system was developed in
C ++ and MATLAB using Intel OpenCV library [37] and BNT [38].
5.2. Baseline gesture models

Different gesture models describe different gesture patterns
of different length. This fact leads us to assign different number of
states to each hidden variable of different models. In fact, this
difference is a weak representation of model duration [31].
The number of states, which each hidden node can take on, is
proportional to the complexity of the corresponding gesture. We
determined the numbers of states of all models by evaluating the
performance while varying the numbers 2–7 for the hidden nodes
X1 and X2 and 5–15 for the hidden node X3 considering the
complexity of gestures. The detailed specification is given in
Table 2. Each process corresponding to the left-hand motion, the
right-hand motion, and the two-hand relative position was
modeled with a left-to-right transition topology. From our
experiments, a small change to the number of hidden states
made little difference in performance, only small portion of test
samples were failed to be correctly classified.
5.3. Isolated gesture recognition

The first set of experiments includes testing isolated gesture
recognition and comparing it with a related model. Given the
limited data set, we carried out 7-fold cross validation in which we
randomly selected 42 sequences from 49 video sequences for each
gesture for training each of the gesture models, and the rest seven
sequences for testing. We repeated this process seven times. The
overall performance was measured by the average rates from the
seven repeated tests.
tion.

mAfFiller,Open,Close, . . . ,Fast Rewindg: gesture or filler DBN models

DBN m’s state triple representing a model configuration,

iASm,1 ,jASm,2 ,kASm,3 where Sm,i : f1,2, . . . ,Nm,ig,iAf1,2,3g

State transition from (a,b,c) to (i,j,k) in DBN m

PðX1
t ¼ ijX1

t�1 ¼ aÞPðX2
t ¼ jjX2

t�1 ¼ bÞPðX3
t ¼ kjX1

t ¼ i,X2
t ¼ j,X3

t�1 ¼ cÞ

where aiASm,1 � Sm,1 ,bjASm,2 � Sm,2 ,ckASm,3 � Sm,3

Probability of observing Ot in state triple (i,j,k) in DBN m

Initial state probability reaching state triple (i,j,k) in DBN m

Accumulated likelihood of the best path

reaching state triple (i,j,k) in DBN m at time t

Source state triple that maximized dm
t ði,j,kÞ

Duration of the best path to state triple (i,j,k) since it entered DBN m

Final state triple Nm,1,Nm,2, Nm,3 of DBN m

A set of DBN models in the path gl-gr where gl-grAfgS-gF ,gF-gSg

Accumulated likelihood of the best path reaching a network node gr at time t

A pair (gl,m) that produced DtðgrÞ where m is a DBN attached to the arc gl-gr
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Recognition using the DBN is done by the following classifica-
tion rule:

l̂ ¼ argmax
l

PðO1:5
1:T jYlÞ

This classifier assumes a uniform prior over the models and
chooses the model l̂ of maximum likelihood given an input
features O1:5

1:T. The parameter vector Yl includes initial probabil-
ities, state transition matrices, and output observation probability
distributions one for each node of the model l. The likelihood for
the given the observation sequence can be obtained by margin-
alizing out all the hidden variables through an interface algorithm
[32] and a junction tree algorithm [39].

5.3.1. Modeling with standard HMMs and coupled HMMs

In the first experiment, we created standard HMMs and
coupled HMMs for the 10 gestures to compare the performance
with that of the proposed DBNs. They observe the same chain
codes of each hand’s trajectory. We assigned uniform values to the
probability distributions of the hand which is not participating in
one-hand gestures to ignore its unintentional motion. When
tested on a selected set of video showing only one hand in one
hand gestures and the other hand is out of scene, the standard
HMMs and coupled HMMs recorded the hit ratio of up to 97.55%
and 97.35%, respectively. As expected a large number of hidden
states are required for the standard HMMs to recognize the 10
hand gestures. The highest recognition rate was obtained from
HMMs with 18 states for hand gestures of ‘Open,’ ‘Close,’ ‘Move to

the First Frame,’ ‘Move to the Last Frame,’ ‘Fast Forward,’ ‘Fast

Rewind’ and more than 30 for hand gestures of ‘Play,’ ‘Pause,’
‘10 Seconds Forward,’ ‘10 Seconds Backward.’ The detailed cross-
validation results are shown in Fig. 9(a) and (b) where each bar
represents the hit ratio for the corresponding subset of data.
The low recognition rate for the subset 2 in Fig. 9(b) is attributed
Table 2
The number of states of the three hidden nodes for each gesture DBN.

Gestures Hidden nodes

X1 X2 X3

OP (Open) 3 3 6

CL (Close) 3 3 6

PL (Play) 4 4 8

PA (Pause) 5 5 10

MF (Move to the First Frame) 3 3 6

ML (Move to the Last Frame) 3 3 6

TF (10 Seconds Forward) 6 6 12

TB (10 Seconds Backward) 6 6 12

FF (Fast Forward) 3 3 6

FR (Fast Rewind) 3 3 6

Fig. 9. Comparison of recognition rates among standard HMMs, coupled HMM, and D

observations of chain codes, and (c) DBN having observations of chain codes and han
to the errors in the image processing that failed to detect a large
part of the skin regions in some frames because of sudden changes
in lighting conditions. Consequently, the means and the covari-
ances of the Gaussians describing the blob shape and position
were unstable leading to jerky gestures. This caused a great
perturbation to the chain codes.
5.3.2. Dynamic Bayesian network with additional information

Just like the standard HMMs and coupled HMMs, we created 10
DBNs for the target gestures but with the addition of the relative
position between two hands as required by the proposed model.
This information, although not absolutely required as an input
(it can be missing), is important for inferencing in the proposed
DBN models. The DBN recorded the recognition rate of 98.98%
(Fig. 9(c)).

Although the performance of HMMs and CHMMs is comparable
to that of the proposed DBN in isolated hand gestures recognition
the state space of DBN is much smaller than the other models. It is
known that we can theoretically model any complex pattern with
an HMM with an arbitrarily large number of states. An important
issue here is how to effectively reduce the number of states down
to a manageable level while retaining the modeling power. Here
does the DBN excels the conventional HMMs.

Another advantage of the proposed model is that it can accept
both one- and two-hand gestures whether two hands are in view
or not. When tested on an additional set of six one-hand gesture
sequences, we obtained the results detailed in Table 3. Both the
standard HMMs and the coupled HMMs recognized only one of the
six one-hand gestures while they worked well for the input
sequences in which only one hand was in view for the one-hand
gestures. On the other hand, the DBN could still recognize all of
them correctly. The tragic failure of the standard and the coupled
HMMs comes from the unintended motion information of the
BN: (a) standard HMM with observations of chain codes, (b) coupled HMM having

d-hand relative positions.

Table 3
Performance comparison of the standard HMM, the coupled HMM and the DBN for

the one-hand gesture sequences in which both hands were in view: � ðhitÞ,

� (miss) where the misrecognition labels are given in parentheses. Hand motion

which is not related to the one-hand gestures can hinder their discrimination from

some of the two-hand gestures.

One-hand gesture data Recognition results

Standard HMM and Coupled HMM DBN

FF (Fast Forward) � : ML (Move to the Last Frame) �

PA (Pause) � �

TF (10 Seconds Forward) � : PA (Pause) �

TB (10 Seconds Backward) � : PA (Pause) �

FR (Fast Rewind) � : MF (Move to the First Frame) �

TF (10 Seconds Forward) � : PA (Pause) �

Hits 1 6
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Table 4
Hand gesture recognition results.

Gestures No. of test gestures No. of hits No. of misses Recognition rates (%)

OP (Open) 49 49 0 100

CL (Close) 49 49 0 100

PL (Play) 49 49 0 100

PA (Pause) 49 49 0 100

MF (Move to the First Frame) 49 48 1 97.59

ML (Move to the Last Frame) 49 48 1 97.59

TF (10 Seconds Forward) 49 49 0 100

TB (10 Seconds Backward) 49 49 0 100

FF (Fast Forward) 49 49 0 100

FR (Fast Rewind) 49 49 0 100

Sums and rates 490 488 2 99.59
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Fig. 10. Decoding result of a gesture sample of PL(Play). (a) Visualization of decoding the states of two hidden nodes X1, X2 given the observations O1 and O3 which

represent each hand’s motion. The numbers next to the markers denote directional codes of each hand at the time and the different markers the state of hidden nodes X1, X2

as shown in the bottom of the figure. (b) Motion segmentation and their state mapping for hidden nodes X1, X2. Refer to the online color version for clear view and

understanding of this figure.
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hand not part of the one-hand gestures. This tells us that the
additional information helps disambiguate the gestures FF (Fast

Forward), ML (Move to the Last Frame), FR (Fast Rewind), and MF
(Move to the First Frame) which are ambiguous when only chain
codes are used.

The next set of test results is about the overall performance in
isolated gesture recognition (see Table 4). With all the input
features considered, the proposed model recognized 99.59% of the
input gestures (the rightmost column). Prior to this we first tested
the model without the face-hands relation features (O2, O4).
According to the analysis of the cases in which the DBN failed, e.g.,
CL (Close), ML (Move to the Last Frame), and MF (Move to the First

Frame), most of the errors came from jerky motions of the hands or
failures in detecting skin pixels. But with the inclusion of the
relative position between a face and two hands, the effect of noise
was reduced and the recognition rate reached up to 99.59% as
presented in Table 4.
Fig. 11. Normalized per-symbol likelihood of gesture models with the corresponding p

likelihood from the corresponding gesture model usually reports a poor match. Howeve

does not peak there. After that point the likelihood decreases slowly or drops abruptly d

models to keep the graph less cluttered. Those small curve segments at the bottom re
5.3.3. Hidden states decoding

Although the performance figures are quite high, they do not
tell anything about the models’ internal workings. Fortunately,
however, we can at least estimate the hidden information
probabilistically. The Viterbi algorithm is the very tool for the
task when using HMMs. We decoded the best state sequence given
an input to check whether the DBN characterizes the gestures to
our intuition. Here the best state sequence is a complete state
sequence for each hidden node from time 1 to T with the
maximum likelihood of the given gesture model for the observa-
tion. This best state sequence can be obtained from the junction
tree algorithm in which we consider only the maximum like-
lihood path from among the states at time t�1 leading to the
current state at time t instead of summing up the likelihood
of all the possible paths. Finding the best state sequence is the
basic for the recognition of continuous gestures considered in
Section 4.
artial observations for the video Seq. VIII. At the beginning of a gesture the output

r, around the end point of each gesture, it definitely beats all the rest even though it

ue to following gestures. We here visualize the likelihoods of only six of ten gesture

present the trajectory of two hands up to the frames.
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The decoding result for the gesture sample of PL (Play) is given
in Fig. 10. The values next to the markers in the figure are the
chain codes (O1, O3) for two hands. The markers represent the
sequence of the state labels of the corresponding hidden nodes
(X1, X2) modeling the motion of each hand. Fig. 10(b) illustrates
the segmentation of hand motion trajectories into four parts in
sequence and the result of state labelling. Each state covers a small
part of the whole motion. According to this result, the DBN models
the gesture well enough since the model makes transitions and
segments the gesture motion at highly intuitive positions in space.
Note that the state change of the two hands are made in step after
a certain length of time in each state. Finally, it should be noted
that the state labels in the sequences are irrelevant to any physical
interpretation. Rather, the consistency of the order is relevant.

5.4. Continuous gesture recognition

5.4.1. A view into gesture network internal decoding

Unlike the case of decoding a single isolated model as shown in
Fig. 10, it is not easy to analyze, not to mention evaluate, the inner
workings of the cyclic network of Fig. 8 for spotting and
recognition of gestures from a continuous video stream.

In Fig. 11, we plotted the temporal evolution of the normalized
likelihood at the final state triple of several gesture DBNs given an
input sequence. To avoid messing up, we plotted the curves of only
the six significant DBNs as indicated in the legend. The normalized
likelihood is the per-vector average of the local segmental
likelihood of a model for the partial sequence. Fig. 11 also
presents several input key frames and the corresponding
segmental trajectories of two hands at the top and the bottom
for an annotation of the plot in the middle. The vertical lines mark
the start and end points of gestures spotted by decoding the
network of gesture DBNs. At the end of a gesture, the
corresponding model computes the maximum likelihood among
the set of models and can tell us the starting time. But the start
time is often obscured by other overlying curves at that time. Note
that, at the beginning of a gesture, the final state triple of the
corresponding gesture DBN usually reports a poor match. But
around the end point of a gesture it definitely beats all the rest
Table 6
A sample segmentation result for video sequence containing eight gestures: OP (Open

TF (10 Seconds Forward), TB (10 Seconds Backward), FF (Fast Forward), S (substitution),

Seq. V Input gestures and ground truth Gesture OP PL

Start 24 81

End 41 115

Detected gestures and frame alignment Gesture OP PL

Start 28 83

End 41 116

Frame alignment error Start 4 2

End 0 1

Table 5
Performance of continuous gesture recognition: substitution (S), deletion (D),

insertion (I).

No. of input gestures Recognition results

Hits Error types Recall (%) Precision (%)

S I D

50 42 5 5 3 84 80.77
even though it does not peak there. Generally it is followed by a
slow or abrupt drop due to ensuing non-gestures.

5.4.2. Performance of continuous gesture recognition

In spotting-based continuous gesture recognition, there are
three types of errors. First, an ‘insertion error’ (I) occurs when the
system detects a gesture even though there is no gesture
performed. Second, a ‘deletion error’ (D) occurs when there exists
a gesture but the system fails to report it. The third type of error is
called the ‘substitution error’ (S) which happens when the system
detects a gesture but mistakes it for others possibly with wrong
boundaries.

A recognition test was made on eight different long video
sequences containing 50 gestures performed continuously in
random sequence. The result is summarized in Table 5. The
conventional evaluation criteria for spotting or detection include
recall and precision rates. The recall rate is a statistical measure of
the completeness of search. It is calculated by dividing the number
of true positives (H) by the total number of true positives (H) and
false negatives (S+D) as follows:

Recallð%Þ ¼
H

HþSþD
� 100ð%Þ

The recall does not include the false positives, i.e. insertion errors.
The following criterion, precision rate, is a complementary
measure taking the insertion errors into account.

Precisionð%Þ ¼
H

HþSþ I
� 100ð%Þ

Table 6 presents the results of spotting and recognizing
meaningful hand gestures from one video sequence out of eight
test video sequences which contain different gestures performed
continuously in random sequence. In each table, the top row
(consisting of three sub-rows) shows the ground truth, the middle
row the decoding result, and the bottom row the discrepancy in
boundary points or misclassification. Most of the gestures were
spotted correctly with the segmentation errors of 2.9 frames for
the start point and 2.1 frames for the end point on average. Among
others, all the insertion errors came from over-segmentations at
the boundaries between fillers and ensuing CL (Close), MF (Move to

the First Frame), or ML (Move to the Last Frame) gestures. In fact, the
boundaries were highly confusing and thus took a large share of
the total errors. To overcome this kind of problem, we may need to
consider the length of each gesture and the duration of each state.
6. Conclusion

This paper has discussed a dynamic Bayesian network (DBN)-
based framework for hand gesture recognition. The use of DBN is
not new in the area of the general class of human activity
), PL (Play), PA (Pause), MF(Move to the First Frame), ML (Move to the Last Frame),

D (deletion), I (insertion).

FF TB TF ML PA MF

145 208 269 358 409 495

177 260 324 393 450 528

TB TF OP ML TB OP MF

209 269 339 358 433 474 495

260 315 352 393 467 489 527

D 1 0 I 0 S I 0

0 �9 0 �1
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recognition. But the technology still leaves room for further
developments for systematic modeling and extension to real
world complex patterns.

The one idea of the proposed method is the introduction of
DBN tailored for hands gesture recognition. This contrasts with
the fixed architecture of coupled hidden Markov model which is
not deemed effective for other than tight-coupled two-party
interactions. Another key feature is the DBN-based network
design that can comprise a generic framework for modeling
and inferencing in arbitrarily complex pattern recognition
problems.

Although stochastic models are useful for describing the noisy
and incomplete observations, accurate and reliable input is an
important factor for the successful recognition. We applied two
skin color models to detect skin pixels in each frame: the YIQ color
model commonly employed to detect skin pixels and the
histogram-based color model built from the pixels in the face
region. The skin blobs are then tracked across frames by applying
the modified method of Argyros et al. [29]. Instead of simplistic
linear prediction, we computed the optical flow for an explicit
prediction and accurate tracking of hand motion.

We also proposed a new hands gesture model having three
hidden variables which together take five observations: chain
codes of each hand’s motion, relative position between the face
and each hand, and relative position of two hands. We tested the
DBN-based system performance with a data set which was
captured from seven different subjects at different times, in total
490 video sequences. The DBN model showed the recognition rate
of 99.59% in isolated gesture recognition with a cross-validation
technique.

For continuous gesture recognition we designed a cyclic
network of gesture DBN models including filler gesture model
which links two successive gestures. Inference over the network is
a dynamic programming search that spots gestures and recognizes
them. The system showed the recall rate of 84% with the precision
of 80.77%.

All the features used are discrete and thus may be possible to
lose some important information that can be useful for better
performance. However, we believe this effort is a useful and
informative milestone for future research efforts on more complex
gestures such as sign languages and whole body gestures.
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Appendix A. Learning parameters in the proposed DBN

p̂q
i ¼ E½Xq

1 ¼ i� ¼
PðO1:5

1 ,Xq
1 ¼ ijYÞ

PðO1:5
1 jYÞ

where qAf1,2g ¼
Expected ratio of the number of transitions

starting in state i at time t¼ 1

 !
ð10Þ

p̂3
ijk ¼ E½X3

1 ¼ kjX1
1 ¼ i,X2

1 ¼ j� ¼
PðO1:5

1 ,X1
1 ¼ i,X2

1 ¼ j,X3
1 ¼ kjYÞ

PðO1:5
1 ,X1

1 ¼ i,X2
1 ¼ jjYÞ

¼
Expected ratio of the number of transitions starting

in state k given ðX1,X2Þ ¼ i,j at time t¼ 1

 !
ð11Þ

Â
1

ij ¼
E½X1

t ¼ jjX1
t�1 ¼ i�

E½X1
t�1 ¼ i�

¼

PT
t ¼ 2

PðO1:5
t ,X1

t ¼ j,X1
t�1
¼ ijYÞ

PðO1:5
t jYÞPT

t ¼ 2
PðO1:5

t ,X1
t�1
¼ ijYÞ

PðO1:5
t jYÞ

¼
Expected ratio of the number of transitions

from state i to state j

 !
ð12Þ

Â
2

gh ¼
E½X2

t ¼ hjX2
t�1 ¼ g�

E½X2
t�1 ¼ g�

¼

PT
t ¼ 2

PðO1:5
t ,X2

t ¼ h,X2
t�1
¼ gjYÞ

PðO1:5
t jYÞPT

t ¼ 2
PðO1:5

t ,X2
t�1
¼ gjYÞ

PðO1:5
t jYÞ

ð13Þ

Â
3

klmn ¼
E½X3

t ¼ njX3
t�1 ¼m,X1

t ¼ k,X2
t ¼ l�

E½X3
t�1 ¼m,X1

t ¼ k,X2
t ¼ l�

¼

PT
t ¼ 2

PðO1:5
t ,X3

t ¼ n,X3
t�1
¼ m,X1

t ¼ k,X2
t ¼ ljYÞ

PðO1:5
t jYÞPT

t ¼ 2
PðO1:5

t ,X3
t�1
¼ m,X1

t ¼ k,X2
t ¼ ljYÞ

PðO1:5
t jYÞ

¼
Expected ratio of the number of transitions

from state m to state triple ðk,l,nÞ

 !
ð14Þ

B̂iy ¼
E½Ot ¼ yjXt ¼ i�

E½Xt ¼ i�
¼

PT
t ¼ 1

PðOt ¼ y,Xt ¼ ijYÞ
PðO1:5

t jYÞPT
t ¼ 1

PðXt ¼ ijYÞ
PðO1:5

t jYÞ

where ðOt ,XtÞA
ðO1

t ,X1
t Þ,ðO

2
t ,X1

t Þ,ðO
3
t ,X2

t Þ,

ðO4
t ,X2

t Þ,ðO
5
t ,X3

t Þ

( )
¼

Expected ratio of the number of

observing symbol y in state i

 !
ð15Þ

where t¼1,y,T. In the above formulas p̂q
i denotes the initial state probabilities, ðÂ

1

ij,Â
2

gh,Â
3

klmnÞ the state transition probabilities of each
hidden node, and B̂iy the observation probabilities.
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Appendix B. Pseudo-code for continuous gesture recognition
Algorithm 1. Continuous gesture detection and recognition

Input:

O¼O1,O2,y,Ot,y,OT

Gesture DBN mAfFiller,Open,Close, . . . ,Fast Rewindg
Output:

Gesture sequence G¼ G1G2 . . .GK

Observation segments Sg¼Sg1Sg2ySgK¼(s(1,t1), s(t1+1, t2),y,s(tK-1+1, tK))
Initialize:

D0ðSÞ ¼ 1, D0ðFÞ ¼ 1, dm
0 ð1,1,1Þ ¼ 0

DPSearch(O)
1: for t¼time 1 to T do
2: for gr¼each network node {F,S} do
3: for arc eAfðgl-grÞg do
4: for m¼each gesture DBN attached to e do

5: dm
t ð1,1,1Þ ¼maxð1,1,1Þ,glfd

m
t�1ð1,1,1ÞAm

ð11,11,11Þ,Dt�1ðglÞ � 1g � Bm
ð1,1,1ÞðOtÞ

6: cm
t ð1,1,1Þ ¼ argmaxð1,1,1Þ,glfd

m
t�1ð1,1,1ÞAm

ð11,11,11Þ,Dt�1ðglÞ � 1g � Bm
ð1,1,1ÞðOtÞ

7: jm
t ð1,1,1Þ ¼

1 if , dm
t�1ð1,1,1ÞAm

ð11,11,11ÞoDt�1ðglÞ � 1

jm
t�1ðc

m
t ð1,1,1ÞÞþ1 otherwise

(

8: for (i,j,k)¼each state triple excluding (1,1,1) of DBN m do

9: dm
t ði,j,kÞ ¼max

ðâ ,b̂ ,ĉ Þ
fdm

t�1ða,b,cÞAm
ðai,bj,ckÞg � Bm

ði,j,kÞðOtÞ

10: cm
t ði,j,kÞ ¼ argmax

ðâ ,b̂ ,ĉ Þ
fdm

t�1ða,b,cÞAm
ðai,bj,ckÞg � Bm

ði,j,kÞðOtÞ

11: jm
t ði,j,kÞ ¼jm

t�1ðc
m
t ði,j,kÞÞþ1

12: end for
13: end for

14: DtðgrÞ ¼maxðgl s:t: mALðgl,grÞÞfd
m
t ðE

mÞg

15: CtðgrÞ ¼ argmaxðgl s:t: mA Lðgl,grÞÞfd
m
t ðE

mÞg

16: end for
17: end for
18: end for
19: G¼ Ø // gesture sequence
20: Sg ¼Ø

21: g¼F // final node in the network
22: t¼T

23: while ta0 do
24: m¼CtðgÞ:m

25: G¼m+G // concatenation
26: Sg ¼ ðt�jm

t ðE
mÞþ1,tÞþSg // concatenation

27: g ¼CtðgÞ:gl

28: t¼ t�jm
t ðE

mÞ // subtraction

29: end while
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