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Decoding Three-Dimensional Trajectory of
Executed and Imagined Arm Movements from
Electroencephalogram Signals

Jeong-Hun Kim, Felix BieBmann, and Seong-Whan Lkesow, IEEE

Abstract—Decoding motor commands from non-invasively use of a prosthetic arm during fine motor control tasks such
measured neural signals has become important in brain- as self-feeding in experiments on non-human primates [1].
computer interface (BCI) research. Applications of BCI indude  aqgitionally, invasive BCls have been utilized to control

neurorehabilitation after stroke and control of limb prost heses. boti f in h tient ith tetraplegia [2
Until now, most studies have tested simple movement trajecties 0POUC arms for use in human patients with tetraplegia [2],

in two dimensions by using constant velocity profiles. Howear, [3]. Application of invasive BCls in humans, however, has
most real-world scenarios require much more complex movermg ~ severe disadvantages. Most importantly, invasive rengedi
trajectories and velocity profiles. In this study, we decode require surgeries on the open brain, which can expose patien
motor commands in three dimensions from electroencephaleg to inflammatory risks in the central nervous system. These

raphy (EEG) recordings while the subjects either executed o . K b ided by obtaini . . |
observed/imagined complex upper limb movement trajectogs. Nnsks can be avoided Dy obtaining non-invasiveé neural mea-

We compared the accuracy of simple linear methods and non- suremgnts. .

linear methods. In line with previous studies our results sbwed Non-invasive BCls are often based on electroencephalogram
that linear decoders are an efficient and robust method for (EEG) recordings. To extract motor commands from EEG
decoding motor commands. However, while we took the same signals, several paradigms have been established. Onéapopu

precautions as previous studies to suppress eye-movemerg-r . . . . - . . .
lated EEG contamination, we found that subtracting residuad paradigm involves instructing subjects to imagine right an

electro-oculogram (EOG) activity from the EEG data resulted in  l€ft hand movements. Differential activation of brain @

substantially lower motor decoding accuracy for linear deoders. associated with the motor control of these respective body
This effect severely limits the transfer of previous resul to parts can then be decoded from EEG signals [4], [5]. Motor
practical applications in which neural activation is targeted. imagery (M) can be extended to a vast array of applications.

We observed that non-linear methods showed no such drop = le. A J. Doud et al. h full trolled
in decoding performance. Our results demonstrate that eye- or example, A. J. Doud et al. have successiully controlle

movement related contamination of brain signals constitues a @ Virtual helicopter by using sensorimotor rhythms (SMRs)
severe problem for decoding motor signals from EEG data. induced by motor imagination [6]. Additionally, G. R. Mutie
These results are important for developing accurate decods of Pytz et al. have shown that temporal coding of individual
motor signal from neural signals for use with BCl-based neual  \y patterns can be used to control two independent degrees
prostheses and neurorehabilitation in real-world scenaros. . . .
of an artificial robotic arm [7]. However, Ml requires a
Index Terms—BCI, Arm movement trajectory, EEG, Upper |arge amount of calibration data and does not work for all

limb rehabilitation, Kernel ridge regression. subjects. Moreover, by using Ml with body parts such as
the foot or tongue to control a robotic arm or a prosthetic
|. INTRODUCTION device is somewhat non-natural behavior. Another method

. to extract motor control commands from EEG signals is to
RAIN'COMPU.TER m_te_rfaces (BCls) can pe used t se selective attention such as P300 potentials or steatdy st
convert electrical activity from the brain into motor

control commands. Extracting commands directly from brakﬁISuaIIy evoked potentials (SSVEP) [8]. While this apprioac

1§ advantageous in that it requires very little trainingeirit is
activity is essential for applications such as neurordhation 9 9 y g

or for exertina control over limb prostheses. The best ; not the most intuitive method of controlling prosthetic tes
9 P ) N and can prove difficult when targeting specific motor regions

of decoding motor commands can be achieved by us'ﬁ%ring neurorehabilitation. Moreover, SSVEP-based BCés a

invasive recordings of neural activity. Invasive BCIs hay ﬁed on sensory stimulation, and thus, require fixatioren t

been shown to enable successful decoding of hand movement < that can lead to, and be affected by, eye fatigue.

speed and direction [1] - [3] and to specifically aliow the Most of the above-mentioned approaches share a common
A preliminary version of this paper has been presented in Fifth d_lsadvantage in that Fhey do_ not allow direct eXtraCtlon_cmc'C
International Brain-Computer Interface Meeting, Pacifico@, California, tinuous movement kinematics. In other words, the discussed

USA, June 2013. _ approaches do not directly obtain motor signals from caktic
This work was supported by the National Research Foundatiokorea h ible f di . =
(NRF) grant funded by the Korea government (No. 2012-005782W. Lee ar€as that are responsible for encoding motor activity. For

is corresponding author. example, SSVEP-based BCls require attentional modulation
J-H. Kim, F. BieBmann, and S.-W. Lee are with the Departmemif sensory areas, while motor imagery-based BCls often use
of Brain and Cognitive Engineering, Korea University, Andong, . f arbi bod d h h
Seongbuk-ku, Seoul 136-713, Korea. E-mdjeonghunkim, biessmann, MOtOr imagery of ar 'trary ody parts, and not t Pjor!eSt at
sw.leg @korea.ac.kr. correspond to a prosthetic effector. For both applicaticas
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Fig. 1. Experimental setup. (a) A subject was instructed twerhis arm in 3
the shape of the infinity symbol. (b) Movement guidelines et x-y axes. Z 05
(c) Motor imagery with a volunteer’s arm. (d) Motor imagerytiwa robotic
arm. 0 Normal Slow Normal Fast

Normal speed Varying speed

. . . . (b)
achieve intuitive and accurate control of prosthetic devic
as well as to attain neurorehabilitation, it is desirable tdgg- 2. (a) Electroencephalography (EEG) and motion tragkiata were

. . . . chronized at the dot during arm movements. (b) Subjeesgformances
directly extract movement kinematics from the assomat@l@erage and standard derivation) of motor executionsndugach run. The

brain regions. y-axis indicates the number of arm movements per 7 s alongnfamity-
Multiple studies have shown that the low-frequency compg¥mbol-shaped trajectory.
nent of EEG signals in motor regions carries informationuabo
movement onset [9], direction, and velocity [10]-[14]. $hi
has allowed several investigators to decode kinematicheof t To date, most studies have only decoded actual hand
ankle, knee, and hip joints during human treadmill walkingnovement velocities. In this study, we aimed to decode 3D
[15]. In another study, the authors were able to reconstrdtjectories of imagined arm movements from EEG signals
hand movement velocity during a four-directional drawinguring a task that required the subjects to imagine and weser
task [16]. Additionally, Bradberry et al. have been able tHovements performed by a robotic arm or another individual’
decode 3D hand trajectories during center-out reachirigs tagfm. Previous studies have already successfully demaoedtra
[10], while P. Ofner et al. proposed a new paradigm witho@ Similar approach [2], [11]. However, in contrast to EEG
external targets to successfully decode continuous arfd séfudies that focus on simple motion trajectories in 2D, heee
paced movements [13]. investigated the extent to which linear decoding methodddco
Interestingly, EEG-based studies on upper limb motor cohe .used_in further realistic settings. Specifically, we ame
trol have only focused on hand movement trajectories; ho®: investigate the motor commands that were required for
ever, motor control of other joints such as the elbow is alf$rforming complex trajectories in 3D with varying velgeit
important for motor rehabilitation. When patients arerteai  Profiles.
using an effector-based robot-assisted rehabilitaticstesy, Many previous studies have used linear methods for decod-
they often lack supervision to verify whether the movementgg hand kinematics. To the best of our knowledge, it has not
are performed in the correct manner. To this end, it is usefy#t been systematically explored whether non-linear mestho
to assess the kinematics of the different joints of the aran Yyield better results when decoding arm trajectories by
In turn, monitoring of the neural correlates of these jqintsising EEG signals. Therefore, in the current study we com-
and eventual discrepancies with the observed behaviohearared the results of linear methods with decoding accusacie
useful to better understand and assist motor neuroretzdinii  0btained using a non-linear method.
[14]. By using a novel preprocessing method and sparserlineaTo enhance the performance of EEG-based BCls, several
regression, Y. Nakanishi et al. have predicted 3D arm astldies have explored additional sources of control contsian
elbow trajectories over time from electrocorticograph@€ @) outside neural activation. For example, G. Onose et al. used
signals in humans [17]. To the best of our knowledge, theye tracking to provide motion end-point information to a
method has not been used to investigate whether EEG-basaabtic arm by inferring the location of the object to be
systems can decode upper limb motor signals other thgrasped from the focus point of a gaze that was concurrent
those of hand trajectories. Therefore, in the current stuey with motor imagination [18]. However, the additional mea-
applied well-established linear decoding methods to ektrasurement device used in these studies can cause discomfort
the kinematics of both hand and elbow movements, when thed increase cost. More importantly, for the therapeutal go
subjects either performed a trajectory themselves or gbder of neurorehabilitation to be accomplished, it is esseritiat
and imagined a trajectory performed by another entity. only neural motor commands be used. In this study, we
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Fig. 3. Decoder example of executed arm movements: The aisppabetween the measured velocity (red dotted line) amddisl velocity (kernel ridge
regression [KRR]: blue dotted line; multiple linear regries [MLR]: black solid line) from subject 1 in the time domai(a) Hand movements at normal
velocity. (b) Elbow movements at normal velocity.

aimed to assess how eye movements affect decoding of neauracy. We hope that our results can raise awareness for
motor signals in complex real-world scenarios. The eye fke problem of EEG signal contamination by eye movements

a much stronger dipole than that of the neural sources i motor signal decoding from neural signals and can help

the brain. Consequently, any eye movement that is cortelate improve motor signal decoding systems operating under

with motor commands (eye-stabilizing reflexes during headalistic experimental conditions.

or body movement or eye movement when pursuing a target

in a motor task) will be reflected in an EEG. Because of I
volume conduction, eye movement-related signals will not

only be reflected in electrodes close to the eye but alsoAn Experimental Procedure

distant electrodes. Therefore, for BCls and neurorehabdn, Ten heaithy right_handed male SUbjECtS between the ages of
it is critical that eye-related signals are excluded fromtano 25 and 32 years participated in this experiment_ The Slﬂ)iect
decoding. In most previous studies subjects were instiucte were seated in an armchair for the duration of the study.
suppress eye movements. During the session eye movememis experiment consisted of three sessions where the ssibjec
were monitored by the experimenter and electro-oculogragere asked to execute a motor trajectory (first session). (Fig
(EOG) activity was measured. EOG contamination of EEfa)), observe the trajectory performed by a volunteerisdha
activity is then measured by correlating the labels (i.evero and imagine the motor command for this trajectory (second
ment V9|0City of the controlled Ilmb) with the EOG aCtiVitysession) (F|g 1(0)), and to observe a trajectory performed
[11]. Low correlations around 0.1 are then interpreted aSEEpy a robotic arm and imagine the movement associated with
being not contaminated by EOG activity. Note however that (third session) (Fig. 1(d)). Each session comprised af tw
this procedure does not ensure that the decoder does not g, one with a constant movement velocity profile and a
EOG related signals, whether or not they are volitionally &econd run with varying movement velocity profile. In each
subconsciously following the target position. Even if th@& run, the subjects were asked to perform eight trials of motor
activity is not correlated to the target signal, correlasi®f execution or imagination. Each trial lasted 60 s, with theetst
EEG activity with this non-neural noise source can be used By a trial being indicated using a short tone; defined breaks
the decoder to improve noise subtraction. Other studied Usgere set between trials to avoid fatigue.

gaze tracking to ensure that there are no eye movements thah each trial, the subjects were instructed to execute or
could contaminate the EEG. However gaze trackers cani@lgine a movement trajectory in the shape of an infinity
detect eye movements such as rotations around the ros{rQy) symbol and a A” symbol when viewed from y-z axes
caudal (roll) axis, which will lead to EEG contaminationsgnd X-y axes, respectively (Fig. 1(a), 1(b)). The subjeasew
Here we prOVide empil’ical evidence for such undetected E%O directed to Synchronize their arm movement Speed by
contamination of EEG signals in motor decoding tasks, Se @;sing a metronome. In the constant velocity profile session,
Flg 6. While we took the same precautions preViOUS Studlﬁ% interval between two metronome ticks was 1700 ms.
to suppress eye movement, we found that removing residtg@e subjects were asked to complete one-half of the infinity
eye-movement related artifacts in neural measurements &fbol with each metronome tone. After two metronome
substantially decrease motor decoding accuracy when usiligks, the subjects were to have moved their hand once droun
standard linear methods. Moreover we found that non'liane Specified traiectory_ In the first run, the Subiects moved
decoding methods can help to counteract this loss in degodifieir arm at normal speed; thus, during this condition, the

. MATERIALS AND METHODS
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Fig. 4. Movement trajectory decoding performance on hdidiata for linear (multiple linear regression [MLR], blug)danon-linear (kernel ridge regression
[KRRY], red) decoders. Each column shows the results for x-ayd z-directions, respectively. The performance measim correlation and normalized root-
mean-square errors (NRMSEs) between measured and pcetligjectories are plotted for constant velocity profile aadying velocity profile conditions.

variation of the hand velocity was low. In the second varyingith the ground on FPz and reference placed on FCz. Vertical
velocity profile session, the metronome ticks were paced atd horizontal EOG activity was also recorded. Electromyo-
1000 ms, 1700 ms, and 2400 ms intervals, with the spegthphic (EMG) signals were amplified and collected from two
of the metronome changing every 7 s. The volume of th®polar surface electrodes over the flexor carpi radialid an
metronome was kept low to reduce the effects on brain signadstensor digitorum muscles of the right forearm [11] during
To reduce eye movement-related artifacts, the subjecte wére imagery sessions. EEG, EOG, and EMG signals were
asked to fix their eyes on a cross that was located in thequired using a sampling frequency of 1 kHz.

middle of a vertical plane (Fig. 1(a)). The robotic arm (WAM Three-dimensional hand and elbow positions were recorded
arm, Barrett technology, Fig. 1(d)) was controlled using @sing a motion-tracking device (FASTRAK, Polhemus) at a
"teach and play” function that involved us recording eigh§ampling rate of 60 Hz. The tracking device was attached
trial trajectories before the experiment that correspdridéhe to the hands and elbows of the subjects during the first
constant velocity and varying velocity profiles. The re@atd session and was then switched to the volunteer for the second
trajectories were then used for the third session (intreducsession. Both EEG and motion tracking data for analysis were

above) of the experiment. synchronized using a computer.
For the third session, the robotic arm was controlled using
B. Data Collection a computer with the arm’s 3D position being recorded at a

For EEG data collection, a BrainAmp system (Brain Progampling rate of 1 kHz. Both EEG and robotic arm data were
ucts GmbH, Germany) was utilized, along with 64 integrate®ynchronized for analysis.
electrodes arranged in the modified 10/20 internationaésys  To investigate a subject’s performance movement according
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Fig. 5. Decoding performance and computational cost as etiumof the number of training samples for different deasdd®ecoding performance, as
measured using r-valua)(or normalized root-mean-square error (NRMSB) ificreased with the amount of training data. While the tregrtime of linear
models was small even for a large training data set, theingitime for the non-linear kernel ridge regression modeteased exponentially with the number
of data points ).

to the metronome, the infinity symbol was divided into sixvith a cutoff frequency of 1 Hz was applied to the EEG and
areas (Fig. 2(a)). When a subject moved his hand to the n&xtematic data. The continuous EEG data were then segmented
division of the symbol, EEG and motion tracking data werato trials. Next, we computed the temporal difference @& th

synchronized for analysis by using a computer. EEG activity as in a previous study [10], and data from each
EEG sensor were standardized according to equation (1).
C. Sgnal Preprocessing Unlt] = o
Continuous EEG signals were down-sampled to 100 Hz. Snlt] = O (1)

n

'r:]oalnnc\/:s\t/i/geatjsgzje tsvfgeg;;;sEc?pr;ﬁ;ﬂ;ﬁg:egeégzngagg_ﬁg\g{ ere S,[t] and v, [t] are the standardized and differenced
signals, with EOG-related activity removed and EEG siénaI oltage at se; SSOS Z; time 5 Hon r? nd av”bare, frespectively,
with EOG-related activity included. To extract EOG-rethte € mean an n, @ndn Is the number of sensors.
activity, we used a similar approach as reported in a previou _

study [19]. Briefly, we computed independent componef} Décoding Model

analysis (ICA) for all EEG electrodes (EOG electrodes were We employed two different approaches to decode arm move-
excluded) by using temporal decorrelation source semaratiment velocity: the multiple linear regression (MLR) thatdha
(TDSEP) algorithm [20]. Prior to performing the ICA, webeen used in a previous study and the kernel ridge regression
reduced the dimensionality of the EEG data by using prifcipdKRR).

component analysis (PCA) to retain the minimum number In the MLR, we used a linear model similar to that used in
of principal components needed to explain 99.9% of the previous study [10]. The model is described in equations
variance in the data. On the remaining principal componen(g) - (4).

we computed the ICA and the correlation between each N I

independent component with all EOG channels. Fig. 6 shows  ;[t] — z[t — 1] = a, + Z ankxsn [t — k] 2)
examples of EOG contamination tests used in previous sudie el k0

and the correlations of ICs with EOG channels. A correlation

coefficient of more than two standard deviations (0.4) away N L
from the mean correlation coefficient was determined as a y[t] —y[t — 1] =ay, + Z ankysn[t — k] (3)
conservative threshold to reject ICs as EOG contaminated. n=1k=0

ICs with EOG correlations of more than 0.4 we considered v o1
to be related to eye-movement rather than to neural activity
Note however that complete removal of eye-movement related 2t =2t =1 = a. + Z Z bkzSnlt — K] 4)
activity is difficult. We here aimed at a removal method tisat i n=1k=0
both efficient and simple to impleméntAlthough the linear where z[t] — z[t — 1], y[t] — y[t — 1], and z[t] — z[t — 1]
artifact removal is potentially limited, it is a first stepntards are the velocities at time t in the, y and z axis. L(=10,
better non-invasive neural decoders in motor control. Véa thcorresponding to 100ms) is the number of time lagjs/ — k|
projected the data back into the EEG source space by usif¢the standardized difference in voltage measured at EEG
the mixing matrix that was obtained from the ICA. sensorn at time lagk, and thea andb variables are weights
The EEG signals were band-pass filtered from 0.1 to 40 @ptained through multiple linear regression. N is the numbe
and then a zero-phase, fourth-order, low-pass Butterviitteh ~ Of electrodes used in analysis.
Besides the well-established linear decoding method, we
INote that using linear methods to discard EOG contaminatiercannot explored a generic non-linear decoding model by utilizing t
exclude that there are residual non-linearly transformé@gEsignals present hthat i ival h " .
in the EEG data. Unfortunately to the best of our knowledgerehare no KRR, an approac that IS equiva entto the mean of a Gaussian
robust non-linear artifact removal procedures for the gmespplication; process regression, which is a very popular method used for
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Fig. 6. (@ andb): EOG contamination tests used in previous studies weredbhas the cross-correlogram between the EOG channels aridrge variable.
Also in our experiments, these correlations were dimimglyi low as shown in the cross-correlogram for subject 1 ingbga and b); panel €) shows an
example of horizontal EOG channel activity and a correlatelépendent component (IC), which was removed from the ddtahows the same EOG activity
and an example of an uncorrelated IC, which was not remoedCeprrelation coefficients (absolute values) betweenzootal EOG channel activity and
each IC of EEG activity in one trial of the experiment. Parigkfiows the histogram of correlations between EOG and ICalf@ubjects in all experiments.
Mean and standard deviation are about 0.002 and 0.2. Daitesl indicate threshold (0.4 and -0.4) for rejection of anfri@n the EEG data. We rejected
all ICs with a correlation coefficient that was 2 times thended deviation away from the mean.

motor control in robotics [21]. The input dag&t] is defined andV denotes the target variable, the velocity at tifrie the
as the temporally embedded standardized EEG signal x,y and z axis

s[t — 0] Sit] x(t) —z(t —1)
H : . Wheres[t] = : . (5) o) = | y@t)—yt-1) |, (11)
s[t — L] St 2(t) — 2(t —1)
V=[t=1),...,0t=T). (12)

The input datas[t] is plotted through mapping onto a kernel
feature space. KRR uses the kernel trick [22], [23] in orddhe predictionsj(5[:]) of KRR for a new data poing[i| is
to estimate a non-linear function of the input data. A kern#ien obtained using equation (8).
function (., .) computes the inner product of two data points For decoding we exclude seven electrodes (Fpl, Fp2, AF7,
in a kernel feature space. AF3, AFz, AF4, AF8) from the analysis to further mitigate
o o . the influence of any eye movements on reconstruction [10].
k(3[il, 3[4]) = (¢(3[i]), &(3[5]) e (6)

We have used a Gaussian kernel function E. Data Analysis

k(3[i], 3[4]) = e~ CLI=sbD" /e (7)  To assess the accuracy of the velocity decoder, we carried

whereos is the width of the Gaussian kernel function. The ke ut a bIoctkwiet 8- IfOIdt crotss \I/agdatlortl r;e;h?d to é(:ephthe
nel trick essentially makes use of the fact that we can ex,prér |n|ng T)T ar;4 els se rlf[) Ontyt ISJOIIH et thu 33 md PR
the optimal non-linear functiop* as a linear combination of as possible [24). In an attempt to evaluate the decoding-accu

data similarities in a kernel feature space racy in the t(_ast set, we calculated two performance measures
The correlation coefficient (r-value) between measuredanov
= Zk(é[z‘], 3[j]) ey (8) ment velocity of the subject, volunteer, or the robotic arm,

and the predicted movement velocity was used to compare
where j is an index variable that runs over all training dat 18 rt_arshults of tlh(te_ cu_rrent stuciydtcl)) those of previous studies
5(j) anda; are dual coefficients that are obtained by . The correlation is computed by
_ -1 g7
a=(K+IN""-V". 9) . C(z,y) a3
Here I is the identity matrix,\ denotes a regularization C(z,x),C(y,y)
parameter,KK' is the square kernel matrix computed on all I herec th ¢ bet d
training data points, so the enty;; is the output of the kernel W"€'€ (z,y) is the univariate covariance betweerandy,

function evaluation between training data pairand j z andy are the measured and decoded velocities along each
direction in 3D space. We also computed the normalized root-
K;; = k(8[d], 3[5]), (10) mean squared error (NRMSE), which yields a more authentic
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Fig. 7. Timelag of scalp maps with the correlation betweamaardized electroencephalography (EEG; after removelegtroocular [EOG]-related activity)
and standardized arm movement velocity from subject 3 dumiotor execution of the hand. The 11 time series exhibitedlai contributions for decoding
trajectory.

estimate of the decoding performance [25]: velocity from EEG signals. Figure 3 shows representative
results obtained from a single subject during the constant
velocity profile condition, while Fig. 4 shows the complete
results averaged across all 10 subjects. In line with ptesvio
s[téjdies that used simple movement tasks with constant ve-
locity profiles, we found that linear methods could decode
executed movements with high accuracy [10]. Additionally,

. . velocities of executed hand movements were decoded the
determine the out-of-sample performance for a certainmpera . : .
most accurately from EEG signals, by using both linear and

ter configuration. This inner cross-validation was repe:de non-linear methods. Overall, we determined that movement

all parameter configurations, and the best configuration was_ . . . :
. . S imagined through observation of either a volunteer or aticbo
used to train the algorithm for the outer cross-validation.

AR - - arm, rather than a trajectory executed by the individuak wa
To use the decoder in clinical applications, training data | o

. o much more difficult to decode. Importantly, we found that the
required for calibrating the decoder. Ideally, a decodeush

. . . o velocity profiles, both constant and varying, were reliathéy
use as little training data as possible to reduce the céliora yp ying

coded. In the constant velocity profile condition, the décod

time. We measured the decoder performance as a function . . -
- L accuracy as measured using the correlation coefficient was
of the amount of training data and reduced training samples

: S . ot significantly different when comparing KRR and MLR;
tbr);iﬁﬁlrgf]ot;rlzgfjscross—valldatlon with only 2, 3, 4, 5, 6, and Eowever, we determined that KRR showed higher accuracies

As an additional control, we shuffled each trial of EEG ang'2n that by MLR as established using normalized root-mean-

: . . - square error (NRMSE) (g2 10~?). This indicates that in the
motl_on tracking data in a trgmmg set of the same run. V_\/_e th%ﬁmstam velocity profile condition, both linear- and narear
carried out 8-fold cross-validation and nested crossdeatiton

L . . _methods could capture the movement trajectory, but that non
I)?‘r(?hpz;:z:az—llr;?/:egrafcr)arl::::]ir: ofthe KRR to obtain an esmaﬂaﬁnear KRR decoding showed better results when modeling
P ' the exact scaling of the desired output. On the other hand,

Lastly, to graphically assess the relative contrlbutloms_ th the varying velocity profile condition, we found that KRR

scalp regions to the reconstruction of executed and 'mdg'nsenowed higher decoding accuracies than that by MLR in both

zrmdy elgcég’e\'\t/.e computedfttheEt(I;eG correlatllon (l;)?]ween Sta\ﬂ_e r-value and NRMSE evaluations. The results suggest that
ardize IME Series aner removaland the measuﬁ%%-linear methods can improve the simple linear models in

arm movement velocity [26]. The corresponding scalp ma%%mplex motor tasks. We also observed that chance level

are plotted in Fig. 8. decoding yielded correlation coefficients below 0.1 andb0.1
with MLR and KRR, respectively. This finding shows that

I1l. RESULTS AND DISCUSSION decoding results obtained using both linear- and nondinea

A. Performance Comparison Between MLR and KRR methods were well above the chance level, even in complex

The subjects’ performance during the movement task TaOtion trajectory tasks.
shown in Fig. 2(b). The executed movement velocities cor- o
responded well to the designated velocities, indicatinag thB- Effect of Reduced Training Data
the subjects reliably followed the specified infinity shape Fig. 5(a) and 5(b) show the decoding accuracy as a function
movement trajectory. For each subject, 3D arm movemaenftthe number of training samples. We found that KRR could
velocities were decoded using MLR and KRR. The resultse used to accurately predict arm velocities by using fewer
show that both MLR and KRR can reliably decode 3D arrraining data compared to that by using MLR. KRR showed

o (wi—yi)?
° . (14)
Tmax — Tmin
In the current study, we used a nested cross-validation
optimize the hyperparameters of the KRR, (¢). In the
training set, a second (inner) cross-validation was peréatto

NRMSE =
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subject 1 subject 2 subject 3 subject 4 subject 5
) 0.1288 ) 0.0957 ) 0.1523 ) 0.0479 ) 0.186

0.0951 0.0657 0.1185 ‘ - 0.0278 0.1307
X 0.0613 0.0357 0.0848 0.0077 0.0754

0.0276 0.0057 0.051 -0.0125 0.0201

-0.0062 0.0242 0.0173 -0.0326 0.0352

0.0757 0.1167 0.0622 0.1028 0.2961

0.059 0.0833 0.0248 0.0725 0.2067
Y 0.0422 0.05 -0.0126 0.0422 0.1174

0.0255 0.0167 -0.0499 0.012 0.028

0.0088 -0.0167 -0.0873 -0.0183 -0.0614

0.1401 0.1814 0.1317 0.1346 0.2063

0.0893 0.1191 0.0876 0.0925 0.1332
Z 0.0385 0.0569 0.0435 0.0504 0.0601

-0.0123 -0.0054 -0.0005 0.0083 0.013

-0.0631 -0.0676 -0.0446 -0.0339 -0.0861

subject 10

0.1994 0.1523 0.133 0.1715 ) 0.0831

0.1337 0.1031 0.0984 0.1189 0.0517
X 0.0679 0.0539 0.0637 0.0663 0.0203

0.0022 0.0048 0.0291 0.0137 -0.0111

-0.0636 -0.0444 -0.0055 -0.0389 -0.0424

0.1969 0.1275 0.0968 0.3615 0.1517

0.1319 0.0787 0.0639 0.2541 0.102
Y 0.0668 0.0299 0.031 0.1467 0.0523

0.0018 -0.0189 -0.002 0.0393 0.0026

-0.0632 -0.0677 -0.0349 -0.068 0.047

0.2099 0.1415 0.099 0.2354 0.1533

0.1435 0.0815 0.0654 0.161 0.111
Z 0.0771 0.0215 0.0319 0.0865 0.0687

0.0107 -0.0385 -0.0017 0.0121 0.0263

-0.0557 -0.0986 -0.0353 -0.0623 0.016

(@)
Motor execution MI with volunteer MI with robot
Elbow

0.1604 0.196 0.1506 0.1285

0.1008 0.1254 0.1174 0.0932

0.0412 0.0548 0.0842 0.058

-0.0184 -0.0158 0.0511 0.0227

-0.0779 -0.0864 0.0179 0.0125

0.1578 0.1486 0.0614 0.0827

0.0967 0.0918 0.0241 0.0565

0.0355 0.035 0.0132 0.0303

-0.0256 -0.0218 -0.0505 0.0041

-0.0868 -0.0786 -0.0879 -0.0221

0.232 0.1715 0.1393 0.1055

0.1468 0.1117 0.0948 0.0737

0.0615 0.0518 0.0502 0.042

-0.0237 -0.0081 0.0056 0.0102

-0.1089 -0.0679 -0.0389 -0.0215

(b)

Fig. 8. Scalp maps of the correlation between standardiZze@ Eafter removal of EOG-related activity) and standardlizém movement velocity. Seven
prefrontal electrodes were excluded from the analysis. Sdadp maps were at 50 ms in the pas): Scalp maps of all subjects during motor imagery with
volunteer. b): Scalp maps of subject 3 during all tasks.
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Motor execution Ml with volunteer MI with robot Fig. 10. Ratio between decoding accuracy after and befaretrebcular

(EOG)-related activity from EEG signals (see Eq. 15) foedin regression
(multiple linear regression [MLR], x-axis) and non-lindarnel ridge regres-
sion (kernel ridge regression [KRR], y-axis). Significgnliésser decrease in
KRR decoding accuracy was observed compared to that in MLR.

Fig. 9. Comparison of correlations plotted in fig. 8 with cbanlevel

correlations; for calculating the chance level correfaiowe shuffled each
trial of EEG and motion tracking data in the same run. Absokdrrelation

coefficients were averaged across all channels for eackecufijhis figure
shows that scalp map correlations are above chance level.

large drop in performance was not observed for the non4linea
decoding approach. Therefore, we evaluated the strength of
NRMSE values of under 0.3 with 1200 samples, wheregse effect of EOG-related activity in EEG data in both linear
MLR needed about 2800 samples to obtain a similar levghd non-linear decoding, by calculating the ratio of
of precision. Fig. 5(c) shows computation time needed for
decoder training as a function of the number of training
samples. Decoding with KRR reduced the error in decoding Per formancewithEoc
movement trajectories, but this improvement involved higie then plotted the coefficients averaged across all runs per
computational costs. More specifically, the training timfe ession in Fig. 10 and found that the drop in performance
the KRR model increased with the number of data point&ias substantially lower when using the non-linear decod-
which determines the size of the kernel matrix that needsittg method. Investigating why non-linear decoding methods

Per formanceyithout EOG

(15)

be inverted (see equation 9). yielded better accuracies is an important topic of future
research. One possible explanation is that motor contral is
C. Effects of EOG and EMG on Decoding difficult problem and representing all trajectories regdiin

) ) _realistic conditions in a linear subspace of EEG activityldo

To investigate the effects of EOG and EMG on decodings pe possible. Kernel methods, as KRR used in this study,
performance, we compared the ICA components of EEG Wiffyye proven very useful in previous studies for the task of
EOG and EMG signals. We emphasize that while we canngbtor control in robotics [21]. These results suggest thatom
ensure that all eye-movement related activity is removemfr contro| of complex trajectories are better modeled using-no
the EEG, this does not compromise the comparison. Primanjiear models. Besides, we cannot fully exclude that the- non
we wanted to investigate the effect of eye-movement relatgfear decoder used non-neural signals in the EEG data which
activity on decoding performance in real world scenario8wh js not accessible to the linear decoder. We emphasize that

using different decoding models. Note that also monitoringis could explain some, not necessarily all, of the deogdin
eye movements with other techniques than EOG electrodggyracy differences.

can fail to measure all eye movements. For instance using

gaze tracking to exclude recordings does not ensure that )

no eye-related activity is present in the EEG, that can ¥ Performance Comparison Between Hand and Elbow

used by the decoder to improve decoding accuracy. As inWe found that elbow velocity could be decoded at slightly
previous studies we found no strong correlations betweemaller accuracy than hand velocity. This could be due to
EOG activity and hand movement velocity, see Fig. 6. Neith#te trajectory the subjects performed. Subjects can maie th
did we find any significant correlations with EMG channelband towards the body center (along the x-axis) with smaller
in the imagined movement condition. However, some ICAlbow movements in the left side of infinity symbol compared
components showed strong correlations with the EOG signals the right side. So velocity variation and movement dis¢éan
Our results strongly suggest that when EOG-related agtivibf elbow movements are different on the left and right side
was left in the EEG recordings, the signals were being usefl the infinity symbol trajectory whereas hand movements
by the decoder. Moreover, decoding performance was foundaie almost the same on both sides. This could explain some
decrease substantially once EOG-related activity was verho of the decoding accuracy differences. Our results show that
(p < 107°) (see Fig. 4). When comparing raw EEG datasing non-linear decoding, we could obtain higher coriatat
with the EEG data from which EOG-related activity had beevalues of about 0.4 averaged across all subjects. Moreteer,
removed, we found a significant drop in the decoding accurasgalp plots showed that hand and elbow movements elicited
for the linear decoding method (g 10~°); however, this similar patterns of activation, which can be explained by th
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high correlation of direction and velocity profiles betweesignals. Furthermore, the results of this study could fam t
hand and elbow movements in the task. Consequently, thasis of efforts aimed to develop natural movement control o
correlation scalp maps of hand and elbow trajectories weag upper limb neuroprosthesis.

similar (Fig. 8). During hand motor execution, the sensars C
C3 and CP2-CP3 of the modified 10/20 international system
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exhibited high correlations in the x and y axis. Similarh8,C  The authors would like to thank Prof. Klaus-Robert Muller
Cz, CP2-CP3 and P2-P3 were also strongly correlated witdr helpful discussions and advice.

the x and y axes during motor execution of the elbow. Along
the z-axis, strong correlations were observed not only @& th
motor cortex but also in the occipital regions. CP3 showed th[1]
highest correlation averaged across all movement axeshwhi

is in line with findings in a previous study [10]. 2]

E. Decoding Trajectory of Imagined Arm Movement

We decoded 3D imagined hand and elbow movemen
during a combined task of imagination and observation o
a robotic arm or a volunteer's arm. Our results show that
when the subjects observed/imagined the robotic arm move-
ment, decoding performane@th EOG related activationwas 4
significantly higher than when subjects observed/imagined
a volunteer's arm movement (g 10~°). However, after
eliminating EOG-related activity, we found that the decadi
performance of the two conditions was similar, indicatihgtt
the improved decoding accuracy in the robotic arm conditior})
was because of eye movement-related activity rather tha{n]
differences in neural activation. The robotic arm was large
and more unnatural than that of a human arm; therefore, We,
speculated that the high EOG-related activation was beaafus
the difference in physical appearances between the two.arms
Another possible explanation could be that another pesson[’g]
arm performs smoother movements and is more similar in
shape to an own arm than a robotic arm; thus subjects could
imagine the hand movement more easily and neural circuits
such as the mirror neuron system [11] could be enhanced. Fig;
8 shows that movement velocities were highly correlatedh wit
EEG activity above motor cortex, FC1-FC4 and P1-P4.

]

(5]

[20]

IV. CONCLUSIONS (1
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