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Abstract

In this paper, we present a method for human action recognition from multi-view image sequences that uses the combined motion and shape
flow information with variability consideration. A combined local–global (CLG) optic flow is used to extract motion flow feature and invariant
moments with flow deviations are used to extract the global shape flow feature from the image sequences. In our approach, human action
is represented as a set of multidimensional CLG optic flow and shape flow feature vectors in the spatial–temporal action boundary. Actions
are modeled by using a set of multidimensional HMMs for multiple views using the combined features, which enforce robust view-invariant
operation. We recognize different human actions in daily life successfully in the indoor and outdoor environment using the maximum likelihood
estimation approach. The results suggest robustness of the proposed method with respect to multiple views action recognition, scale and phase
variations, and invariant analysis of silhouettes.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recognition of human actions from multiple views image
sequences is very popular in the computer vision community
since it has applications in video surveillance and monitor-
ing, human–computer interactions, model-based compressions,
augmented reality, and so on. The existing methods of human
action recognition can be categorized depending on the image
state properties, such as motion-based, shape-based, gradient-
based, etc. Several human action recognition methods have been
proposed in the last few decades. Detailed surveys can be found
in Refs. [1–4], where different methodologies of human ac-
tion recognition, human movement, etc., are discussed. Based
on these reviews, researchers either use human body shape in-
formation or motion information with or without body shape
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model for action recognition. Our approach can be considered
as a combination of shape- and motion-based representation
without using any prior body shape model.

One standard approach for human action recognition is to
extract a set of features from each image sequence frame, and
use these features to train classifiers and to perform recogni-
tion. Therefore, it is important to answer the following ques-
tion. Which feature is robust to action recognition in critical
conditions or varying environment? Usually, there is no rigid
syntax and well-defined structure for human action recognition
available. Moreover, there are several sources of variability [30]
that can affect human action recognition, such as variation in
speed, viewpoint, size and shape of performer, phase change
of action, and so on, and the motion of the human body is
non-rigid in nature. These characteristics make human action
recognition a more challenging and sophisticated task. Consid-
ering the above circumstances, we consider some issues that
affect the development of models of actions and classifications,
which are as follows:

• The trajectory of an action from different viewing directions
is different; some of the body parts (part of hand, lower part
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Fig. 1. Representation of human action using shape and motion sequences with multiple views. (a) Multiple views variation of an action. (b) Shape sequences
(walking, raising the right hand, and bowing). (c) Motion sequences (walking, raising the right hand, and bowing). The motion distribution is different for
each action.

of leg, part of body, etc.) are occluded due to view changes,
which are shown in Fig. 1.

• An action can be viewed as a series of silhouette images
of the human body (Fig. 1(b)). The silhouette information
involves no translation, rotation, and scaling. Moreover, the
silhouette sequence of an action is invariant to the speed.

• Action can be viewed by the motion or velocity of human
body parts (Fig. 1(c)). Simple action involves the motion of a
small number of body parts and complex action involves the
motion of a whole body. The motion is non-rigid in nature.

• Human action depends on anthropometry, method of per-
forming the action, phase variation (starting and ending time
of the action), scale variation of an action, and so on.

Among various features, the motion or velocity of the body
parts and human body shape play the most significant roles
for recognition. Motion-based features can portray the approx-
imation of the moving direction of the human body, and hu-
man action can be effectively characterized by motion rather
than other cues, such as color, depth, and spatial features. In
the motion-based approach, the motion information of the hu-
man such as optic flows, affine variation, filters, gradients,
spatial–temporal words, and motion blobs are used for recog-
nizing actions. Motion-based action recognition has been per-
formed by several researchers, such as [6–17]. However, most
motion-based techniques are not robust in capturing velocity
when motions of the actions are similar for the same body parts.
As an example, motion-based features can easily discriminate
between walking and sitting down, but fail to discriminate be-
tween walking and slow running or jogging. On the other hand,
the human body silhouette represents the pose of the human
body at any instant in time, and a series of body silhouette im-
ages can be used to recognize human actions correctly, regard-
less of the speed of movement. Different descriptors of shape

information of motion regions such as points, boxes, silhou-
ettes, and blobs are used for recognizing or classifying actions.
Several researchers performed action recognition using shapes
or silhouettes, such as [16,18–24]. Therefore, combing shape
and motion-based features overcome the limitations of either
motion or shape-based behaviors. During the action recognition
of persons, we utilize the combined motion and shape infor-
mation for recognizing the periodic as well as non-periodic or
single occurrence actions. Moreover, most of the human action
recognition techniques depend on the viewing direction. How-
ever, the trajectory of an action from different viewing angles
is different. The work of testing an action using multi-view mo-
tion learning is not well resolved. Seitz and Dyer in Ref. [15]
described an approach to detect cyclic motions that is affine
invariant. Rao and Shah [25] again used view invariant actions
by affine invariance assuming that 2D positions of the hand are
already known. This approach utilized spatiotemporal curva-
ture maxima as instants of interest to map an unknown view-
point to a “normal” viewpoint. The action was considered as
being completely represented by the motion of the hand alone.
In Ref. [26], authors presented human action in video using
3D model-based invariants and represent each action using a
unique curve.

Fig. 2 shows a block diagram of the proposed method. In the
preprocessing steps, the foreground is extracted by using back-
ground modeling, shadow elimination and morphological oper-
ation. From the foreground image, the velocity of an action is
estimated by using combined local–global (CLG) optical flow.
The global shape flow features are extracted from silhouette
image sequence. The shape flow represents the flow deviation
and invariant moments. We use the modified Zernike moment,
which is robust against noise and invariant to scale, rotation, and
translation, is used to reduce noise and to normalize the action
data spatially. Motion features are extracted based on the same
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Fig. 2. Flow diagram of the proposed method.

center of mass (CM) of corresponding silhouette image. The
combined features are then feed to multidimensional hidden
Markov model (MDHMM). In the classification stage, match-
ing of an unknown sequence with a model is done through the
calculation of the probability that the MDHMM could gener-
ate the particular unknown sequence. The MDHMM with the
highest probability most likely generated that sequence. The
actions modeling and classification in this work involves both
the Korea University Gesture database (KUGDB) [27] and the
KTH database (KTHDB) [6]. In our work, for modeling and
classifying human actions, the following techniques are pro-
posed for extracting features from image sequences and classify
actions:

• 2D Cartesian representation of CLG optic flow velocity vec-
tors (horizontal and vertical component) are derived from
the normalized flow of each quadrant (the origin of quadrant
axis is the CM position of corresponding silhouette image),
characterizing the recognition of motion in action with less
noise.

• The shape flow features are extracted from the global flow of
the shape. The global flow of human body silhouette images
is extracted by applying robust description of geometric-
orthogonal moments, flow deviations and anthropometry
flow, with recognition of shapes in action.

• Learning of the combined features using the MDHMM in dif-
ferent viewing angles characterizes the recognition as view
invariant.

• Normalization of any body shape to a suitable representation
characterizes the anthropometry variation of performers.

• Translation, rotation, and scale invariant analysis of Zernike
moments characterize view-invariant behavior of spatial ac-
tion data and is used to reduce noise.

• The sources of variability of human actions, such as view-
variation, phase variation of actions, and person’s anthro-
pometry are adapted to the system.

Therefore, based on the combined information of silhouettes,
optical flows, sources of variabilities (such as view-variation,
speed of actions, phase variation of actions, and person’s sizes),
and multiple views, human action recognition is more robust.
We propose to recognize several actions of humans from mul-
tiple views learning of shape and motion features using the
MDHMMs, since we use multiple features at the same time.

This paper is organized as follows: Section 2 presents ac-
tion representation in our system. Section 3 briefly summa-
rizes the basic algorithm of foreground extraction from the
background. Section 4 discusses feature extraction using the
shape flow and CLG motion flow. Section 5 describes and illus-
trates MDHMMs for action recognition. Section 6 presents ex-
perimental results and discussions of the selected approaches.
Finally, conclusions are drawn in Section 7.

2. Human actions representation

2.1. Action in world and image coordinate system

Human action is the movement of humans for performing a
task within a short period of time. The action may be simple
or complex depending on the number of body limbs involved
in the action. We consider that a complete human action rep-
resentation might be the set of all 3D points on a performing
actor. Therefore, we can consider human actions as 4D points
in real world-space, which can be represented as follows:
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where X, Y, and Z represent the state-space representation of a
point in the 4D plane of a person performing an action. Here,
j represents the points set, or anatomical landmarks points, or
voxel and Ti is the ith frame in the world coordinate. When
the human action is projected into the spatial–temporal image
plane, then Eq. (1) can be represented by
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where x and y represent the 2D points in the spatiotemporal
image space or 3D space and j represents the points set of
pixel in the action region and ti is the ith frame in the im-
age coordinate in performing an action. The relation between
t and T could be linear, such that t = �t T + dt , where �t and
dt represent the temporal coefficient and temporal constant,
respectively.
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2.2. Actions representation in our system

In our approach, human action from an image sequence,
f (x, y, t) is represented by a set of multidimensional CLG op-
tic flow feature vector and shape flow feature vector. Therefore,
the action matrix within the action boundary represents

Asystem =
(
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i · · · s
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j v
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j · · · v
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j

)
, (3)

where vj represents the CLG optic flow velocity and si rep-
resents the shape flow feature of an action with in the bound-
ary of starting frame ts and ending frame te with the pe-
riod or duration p = te − ts . Here, s

ts
i = {sts

1 , s
ts
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}. Therefore, the combined features due
to motion and shape at each frame is D1 + D2.

2.3. Diversity of action representation

To consider the diversity of modeling and classifying ac-
tions, we consider the anthropometry and phase variation of the
action. For anthropometry variation, the image sequences are
changed into f (x ± a, y ± b, t). In this situation, the represen-
tation is same as Eq. (3) but the features are different. The vari-
able “phase change” refers to the action occurred at different
starting and ending state. The starting and ending phase of an
action depends on persons, time, style, and so on. For example,
in the ‘bowing’ action, a person bends the waist at different an-
gles from the reference position, i.e. from a standing position.
Therefore, the spatial–temporal image sequence, f (x, y, t) can
be alternatively represented by f (x, y, t − �) for phase vari-
ation, where � represents the time delay or phase change of
an action. The value of te in Eq. (3) is replaced by te − � for
ending phase variation of an action. Similarly, ts is replaced by
ts +� starting phase variation of an action. The camera view in-
formation such as zooming of the person, slanting motion, and
rotation of human body can be modeled by using affine trans-
formation, g(xa, ya, t)=f (a1x +a2y +dx, a3x +a4y +dy, t),
where, ai and dj are constants. Therefore, these factors autho-
rize the diversity of modeling the actions.

3. Preprocessing

In the preprocessing steps, we extract foreground, eliminate
shadow, and then apply filtering. We then define the action
boundary from the foreground image sequence. Briefly, these
are explained below:

3.1. Foreground extraction

3.1.1. Background modeling
We use background subtraction to extract the foreground,

since the background is relatively static for all image sequences.
We adopt a simple background modeling technique such as
multiple Gaussian background modeling, for foreground extrac-
tion. For each subsequent frame, pt = [pR(t), pG(t), pB(t)],
we assume independence among different color channels. Sev-

eral background images are accumulated and we extract the
mean, standard deviation, and variance of the background im-
ages. Let �R , �G, �B be the mean values, and �R , �G, and
�B be the standard deviation of the background images which
are computed over N frames, then, we extract the foreground
according to

p(xt ) =
⎧⎨
⎩1 if

{ |pR(t) − �R|�2�R or
|pG(t) − �G|�2�G or
|pB(t) − �B |�2�B

0 otherwise.

(4)

3.1.2. Shadow elimination
After background subtraction, there still exits some noises in

the foreground, such as motion shadow. Therefore, the shadow
elimination method should be adopted. Horprasert et al. pro-
posed in Ref. [28] a pixel-based segmentation model in RGB
color space which decomposes each background value into its
brightness � and chromaticity distortion CD. In this method, for
a given pixel, the expected background value Et =[�R, �G, �B ]
is computed from N training frames representing the static
background. For each subsequent frame pt , brightness (�t ) and
chromaticity distortions (CDt ) from the background value are
given by

�t= ((pR(t)�R/�2
R)+(pG(t)�G/�2

G)+(pB(t)�B/�2
B))

[�R/�R]2+[�G/�G]2+[�B/�B ]2 , (5)
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)2
.

(6)

In the RGB space, the chromaticity distortion is the length of
the perpendicular vector between a pixel value pt and the line
joining the zero intensity point and the background value �. It
is an indicator of how much the pixel color differs from the
background color. During the training phase, the variation b of
the chromaticity distortion is evaluated,

b =
√∑N−1

t=0 CD2
t

N
, (7)

and used to compute a normalized chromaticity distortion, ĈD=
CDt /b. For a given scene, the threshold �CD is chosen accord-
ing to the successful detection rate of the shadow. Pixels are
then labeled background, foreground, cast shadow, or highlight.
Background pixels have small normalized brightness distortion,
and small normalized chromaticity distortion. A pixel is labeled
as cast shadow or highlight if it has a small normalized chro-
maticity distortion and a lower (cast shadow) or higher (high-
light) brightness value than the background value. Unclassified
pixels are labeled as foreground. More specifically, a pixel is
labeled as cast shadow if these two conditions are respected:
ĈDt < �CD and �min < �t < 1.

3.1.3. Filtering
After the above shadow elimination step, there may exist

some small regions and noise. For further preprocessing, sev-
eral morphological operations such as erosion, dilation, and
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Fig. 3. Foreground extraction procedures. (a) Background image. (b) Current image. (c) Extracted foreground image with shadow. (d) Detected shadow pixels
(green color). (e) Foreground image after shadow removal. (f) Foreground image after morphological and filter operations.

Fig. 4. Action boundary definitions. (a) Spatial boundary. (b) Action volume boundary by using spatial and temporal boundaries.

connected component analysis should be adopted. Finally, the
resulting foreground image is obtained by median filtering. The
neighboring window size of the median filtering is 5×5. Fig. 3
shows the image preprocessing steps for foreground extraction.

3.2. Action boundary

We define the action boundary as the action region in the im-
age sequence where the movements of the person occur or the
person exists. The action boundary depends on (1) anthropom-
etry of human body, (2) distance between the video sensor and
person performing action, and (3) type of action. Due to the
above reasons, the action boundary of an image sequence varies
and is extracted automatically from the filtered foreground im-
age. The process is done according to the following steps:

• Find the CM of the silhouette (x̄, ȳ) as shown in Fig.
4(a), where (x̄, ȳ) = (m10/m00, m01/m00) and mpq =∑

x

∑
yx

pyqf (x, y).
• Define the maximum width and height distance from CM.

Suppose they are xw and yw.
• Now, define the spatial action boundary by a bounding box

of corner points (x̄ − xw, ȳ − yw) and (x̄ + xw, ȳ + yw). It
may be the same size of the original image.

• The temporal boundary of the action is bounded by starting
time (ts) and ending time (te).

According to the definition of action boundary, Fig. 4(a) shows
the spatial boundary of the current frame and (b) shows the
spatial–temporal boundary of the action. The spatial–temporal
boundary is defined by two extreme points, (x̄−xw, ȳ−yw, ts)

and (x̄ + xw, ȳ + yw, te). The spatial action boundary for all
specified actions is assumed as the same and the temporal action
boundary varies from action to action. For example, the tem-

poral boundary among walking, jogging, and running can be
described as (te − ts)running �(te − ts)jogging �(te − ts)walking .
This is not fixed, because it depends on person and style.

4. Feature extraction

We use the CLG optic flow and shape flow feature for action
representation and classification. The silhouette image sequence
is used to extract the shape flow features and the foreground
image sequence is used to extract the CLG motion flow features.

4.1. Shape flow

We define the shape flow as the global flow of silhouettes
over the period of an action. The shape flow is characterized by
the invariant geometric and Zernike moments, and flow devia-
tions over the silhouette sequence, and global anthropometric
variations. Therefore, the global motion of the shape can be in-
tegrated by multiple features of silhouette images, and can be
stated by si = [sg, sz, sd , sa]T where the symbols are defined
and are described in the following subsections.

4.1.1. Geometric moments
Moments and function of moments have been utilized as pat-

tern feature in pattern recognition applications. Such features
capture global information about the image and do not require
close boundaries as required by Fourier descriptors. Hu [29]
introduced seven nonlinear functions, hi , where i = 1, 2, . . . , 7
defined on regular moments using central moments which are
translation, scale, and rotation invariant. These seven so called
moment invariants were used in many pattern recognition prob-
lems. We use sg = [h1, h2, h3, h4]T as the geometric moment
feature.
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org. tr. rot. sc1. sc2.

org. tr. rot. sc1. sc2.

Silhouette Image Silhouette Image Silhouette Image Silhouette Image Silhouette Image

Feature-1 Feature-2 Feature-3 Feature-4 Feature-5

Fig. 5. Invariant analysis of geometric and Zernike moments of shape analysis. Each row represents the original (org.), translated (tr.), rotated (rot.), scaling-up
(sc1.), and scaling-down (sc2.) images. (a) Original images; (b) silhouette images; (c) invariant features.

4.1.2. Zernike moments
The geometric moment shows highly inaccurate results when

the image is noisy. Zernike polynomials provide very useful
moment kernels, present native rotational invariance and are
far more robust to noise. Scale and translation invariance can
be implemented using moment normalization. The magnitude
of Zernike moments of the image sequence has been treated as
global shape flow because Zernike moments are rotation invari-
ant. We use the modified 2D Zernike moments of the silhou-
ette images. The 2D Zernike moments of the image intensity
function f (�, �) with order n and repetition m is expressed as
follows [30]:

Znm = n + 1

	N

∫ 2


0

∫ 1

0
V ∗

nm(�, �)f (�, �)� d� d�, (8)

where V ∗
nm(�, �) = Rnm(�) exp(−jm�) and Rnm(�) is a ra-

dial polynomial defined by Rnm(�) = ∑(n−|m|)/2
s=0 (−1)s((n −

s)!/(s)!((n + |m|)/2 − s)!((n − |m|)/2)!)�n−2s . Here � =√
(2x − N + 1)2 + (N − 1 − 2y)2/N with condition 0���1,

� = tan−1(N − 1 − 2y)/(2x − N + 1)), and 	N is a nor-
malization factor. Here, n is a non-negative integer and
m is a positive or negative integer subject to constraints
n − |m| = even, and |m| < = n. For each silhouette image
and one given value � (length of vector from origin to (x, y)

pixel), we obtain the complex Zernike moments and is given by
Znm = ((n + 1)/	N)

∑N−1
x=0

∑N−1
y=0 f (x, y)Rnm(�) exp(−jm�).

The image position and scale is not fixed, therefore, the invari-
ant analysis of the moment is necessary. To achieve scale and
translation uniformity, the regular moments (i.e. mpq ) or radial
polynomials of each image can be utilized. In general, an im-
age function f (x, y, t) can be normalized with respect to scale

and translation by transforming it into g(x, y, t) [30], where

g(x, y, t) = f
(x

a
+ x̄,

y

a
+ ȳ, t

)
, (9)

with (x̄, ȳ) being the CM of f (x, y, t) and a is the scale factor.
The corresponding invariant Zernike moment Ẑnm can be ex-
pressed by Ẑnm,t =((n+1)/	N)

∑N−1
x=0

∑N−1
y=0 g(x, y, t)Rnm(�)

exp(−jm�). We exploit the concept and analysis of translation
and scale invariants from [31,32] and use the translation and
scale invariant features. We use sz = [Ẑ22, Ẑ20, Ẑ31]T as the
Zernike moment feature. We use the invariant Zernike moment
features along with geometric features for robust description
of shape flow. As an example, Fig. 5 shows the normalized in-
variant moment feature by using column plot for the shape de-
scription. Feature-1 (h1) and feature-2 (h2) show the invariant
geometric moments and feature-3 (Ẑ22), feature-4 (Ẑ20), and
feature-5 (Ẑ31) show the invariant Zernike moment features.
The percentage errors of invariants are less than 0.5%.

4.1.3. Global motion deviation of silhouettes
We mentioned that the shape flow describes the global motion

over the full time frame. For any silhouette image, the mean
absolute deviation dkl(t)= (dkx(t), dky(t)) from the CM in the
direction of x and y of a silhouette f (x, y, t) is used for shape
flow description.

dkl,t =

⎧⎪⎨
⎪⎩

x − flow:
∫∫

(x,y)∈f (x,y,t) � T h|x−x̄|f (x,y,t) dx dy∫∫
(x,y)∈f (x,y,t) � T hf (x,y,t) dx dy

,

y − flow:
∫∫

(x,y)∈f (x,y,t) � T h|y−ȳ|f (x,y,t) dx dy∫∫
(x,y)∈f (x,y,t) � T hf (x,y,t) dx dy

,

(10)

where Th represents the threshold value and Th = 0. With this
shape flow, we can distinguish between actions where more
body parts are involved in motion (for example, sitting on floor,
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Fig. 6. CLG optical flows overlapping on the image of several actions in some selected frames (KTHDB). (a) Boxing; (b) hand clapping; (c) hand waving;
(d) jogging; (e) running; (f) walking.

getting down on the floor, lying down on the floor, etc.), and an
action concentrated in a smaller area where only small parts of
the body move (for example, sitting on a chair, bowing, etc.).
This flow feature can be considered as span or wideness of
motion. Another important feature for describing global mo-
tion is the mean intensity of shape flow, dke(t) of a silhouette
f (x, y, t), which represents the average absolute height or el-
evation of shape distribution, which can be expressed as

dke,t =
∫∫

(x,y)∈f (x,y,t)�0f (x, y, t) dx dy∫∫
(x,y)∈f (x,y,t)�0 max f (x, y, t) dx dy

. (11)

A large value of dke,t indicates very intense flow of the silhou-
ette and a small value indicates minimal flow. Therefore, the
global flow deviations sd =[dkx, dky, dke]T is used as the shape
features. In addition to flow deviation, we use the global anthro-
pometry variation of a person in the image sequence of an action
as a feature. The projected width (proj.w) and height (proj.h) or
their ratio of the person (i.e. silhouette) can be used to express
the feature. We use sa =[f (x, y, t)proj .w, f (x, y, t)proj .h]T as
the anthropometric shape flow.

4.2. CLG optic flow features

We use the CLG optic flow velocity as the motion feature,
because it can precisely determine the motion. The CLG op-
tic flow method proposed in Ref. [33] has complementary ad-
vantages over either global [34] or local [35] methods, due
to its robustness against noise and combination of both local
and global flow. For brief analysis of the method, the follow-
ing notations are used: CLG optic flow: v = [vx, vy, 1]T at
pixel x = (x, y), velocity gradient : ∇v = |∇vx |2 + |∇vy |2,
intensity gradient : ∇3p = (px, py, pt )

T, and motion tensor :
J�(∇3p) = Kp ∗ (∇3p∇3p

T). Kp is smoothing kernel (spatial
or spatial–temporal). The spatiotemporal version of the CLG

functional is given by

ECLG(v) =
∫

video

(vTJp(∇3�)v + �|∇3v|2) dx dy dt , (12)

where convolutions with Gaussians are now to be understood in
a spatiotemporal way and |∇3v|2 = |∇3vx |2 + |∇3vy |2. It mini-
mizes the optical flow field, v(x, t) = (vx(x, t), vy(x, t)) using
Euler–Lagrange equations [33]. The Euler–Lagrange equations
are given by

�3vx − 1

�
(J11vx + J12vy + J13) = 0, (13)

�3vy − 1

�
(J12vx + J22vy + J23) = 0, (14)

where, � is the smoothing constant, �3 denotes the spatial–
temporal Laplacian and �3 = �xx + �yy + �t t . Jnm is “motion
tensor” or “structure tensor” which denotes the (i, j)th compo-
nents of J�(∇3p) and is given by

J =
(

J11 J12 J13
J21 J22 J23
J31 J32 J33

)
=
⎛
⎝ p2

x pxpy pxpt

pypx p2
y pypt

ptpx ptpy p2
t

⎞
⎠ . (15)

The solution of Eq. (12) is given in Ref. [33] and thus we
estimate the velocities vx(x, y, t) and vy(x, y, t). Fig. 6 shows
the optical flow velocity overlapping on the image of several
actions. It is found that related body parts involve optical flow
velocity. For example, when the person conducts the “hand
waving” action, motion only involves the hand. Similarly, when
the person conducts the “running” action, then motion involves
the whole body. For consistency of further analysis, the CLG
flows are normalized at any instant of time, by

vnx(x, t) =
{

x − flow: vx(x,t)−vx.min(t)
(vx.max(t)−vx.min(t))+�m

,

y − flow:
vy(x,t)−vy.min(t)

(vy.max(t)−vy.min(t))+�m
,

(16)

wherevnx(x, t)represents the normalized optical flow (the x-
component or y-component velocity) in the spatial action
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Fig. 7. Multi-geometry CLG motion flow features extraction. (a) CLG flows show in the quadrant regions. The small circle represents the CM of the image
and the lines divided the image into quadrants. (b) The selection of CM position for (a). (c) Four quadrant blocks from the CM.

boundary. Moreover, vx·max and vx·min represent the maxi-
mum and minimum motion of vx(x, t) ∈ Ia , where Ia is the
spatial boundary of an action. Similarly, vy·max and vy·min

represent the maximum and minimum motion of vy(x, t) ∈ Ia .
We use the constant value �m for avoiding zero in the de-
nominator. In order to extract the features from normalized
flow, we partition the spatial action boundary into four quad-
rant blocks, B(k) of equal size, as shown in Fig. 7. The four
quadrants are described by (i) {(x̄ − xw, ȳ − yw), (x̄, ȳ)}, (ii)
{(x̄, ȳ − yw), (x̄ + xw, ȳ)}, (iii) {(x̄ − xw, ȳ), (x̄, ȳ + yw)} and
(iv) {(x̄, ȳ), (x̄ + xw, ȳ + yw)}. The point (x̄, ȳ) denotes the
CM, xw is the width, and yw is the height of the block of the
current silhouette image. Therefore, the flow feature vectors
are extracted at each block with nB number of pixels using

vkl,t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − flow: 1
nB(pix>0)

∑
x∈B(k)

vnx(x, t),

y − flow: 1
nB(pix>0)

∑
x∈B(k)

vny(x, t),

abs.flow: 1
nB(pix>0)

∑
x∈B(k)

√
v2
nx(x, t) + v2

ny(x, t).

(17)

Here, the vector vkl,t represents either the Cartesian compo-
nent (x-component and y-component) of flow features or abso-
lute CLG flow of the action boundary at any time. The subscript
l = {x, y, abs.}, k denotes the number of blocks, pix represents
the nonzero pixel value in the spatial boundary, and nB is the
number of motion pixels at any block.

4.3. Combined shape and CLG flow

For each image frame in any action, the combined flow con-
sists of shape flow and CLG motion flow. The combined flow
can also be termed as the key features at any instant of time t
of the image sequence. The combined flow at time t is given
by ct = [si, vj ]T. Each action video in any view direction or
any scenario d can be represented as an image sequence with
starting time ts and ending time te. Therefore, features in the
action volume boundary are expressed by

Hd = [cts ,d , cts+1,d , . . . , cte,d ], (18)

where (te − ts) is the number of frames used in an action video.
The value of (te−ts) depends on action variation and performer.
For starting and ending phase variation of an action, Eq. (18)

is modified according to

Hd.phase

=
{

start delay: [cts+�(te−ts ),d , cts+2�(te−ts ),d , . . . , cte−ts ],
end delay: [cts ,d , cts+1,d , . . . , cte−ts−�(te−ts )].

(19)

5. Action modeling and classification using MDHMMs

The hidden Markov models have been widely used for an-
alyzing time sequential data, such as speech recognition and
online handwriting recognition. We organize the action recog-
nition system using motion and shape flow feature and multidi-
mensional hidden Markov models. Some previous research on
gesture and human activity recognition used HMMs, such as
in Ref. [36–40,16,41–43]. We choose data that consist of sev-
eral independent components. Therefore, we use MDHMMs for
modeling human actions. For multi-view recognition of human
actions, we build an MDHMM model for each action.

5.1. Action modeling using MDHMMs

Before modeling human actions, we review the basic hidden
Markov model (HMM) notation. Detailed explanation of the
HMM may be found in several sources including [44].

• S = {S1, S2, . . . , SN }—a set of N states. The state at time t
is denoted as qt .

• V ={v1, v2, . . . , vM}— a set of M distinct observation sym-
bols. The observation at time t is denoted as ot .

• A = aij |N×N is the state transition matrix whose elements
aij = P(qt+1 = Sj |qt = Si) are transition probabilities.

• B = {bj (Ok)}|N×M is the observation symbol probability
matrix, where {bj (Ok)} is the probability of emitting vk at
time t in state Sj : bj (k) = P(ot = vk|qt = Sj ).

• 
 = {
i}—an initial state distribution where 
i is the proba-
bility of the initial state: 
=P(q1 =Si)=[
1, 
2, . . . , 
N ].

The complete parameter set of the HMM can be compactly
expressed as

	 = {A, B, 
}. (20)

There are three key problems that must be solved for real ap-
plication of the HMM: evaluation, decoding, and estimation.
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To train the reference data of action sequences, the Baum–Welch
algorithm is used. To obtain an HMM, we need to compute
P(O|	). Since, we use the combined optic flow and shape
flow vector for action recognition, then we can consider more
observable symbols at each time t. Therefore, we choose the
MDHMM which was proposed in Ref. [45] for skill learning
to telerobotics. To deal with multidimensional data, the origi-
nal HMM algorithms must be modified. For a R dimensional
HMM, in state qt = Si , M × R distinct output symbols

O = {O1, O2, . . . , OM}, (21)

can be observed, where R is the dimensions of the features
in space and Ok = [ok(1), ok(2), . . . , ok(R)]. If we assume
that each dimensional signal is stochastically independent, then
based on this assumption, the forward variable � computation
in Ref. [44] can be modified as follows:⎧⎪⎪⎨
⎪⎪⎩

Initilization: �1(i) = 
i

R∏
l=1

bi(O1(l)),

Induction: �t+1(j) =
[

N∑
i=1

�t (i)aij

]
R∏

l=1
bj (Ot+1(l)).

(22)

Similarly, the backward variable � in Ref. [44] is computed as
follows:⎧⎨
⎩Induction: �t (i) =

⎡
⎣ N∑

j=1

aij�t+1(j)

⎤
⎦ R∏

l=1

bj (Ot+1(l)) . (23)

An iterative algorithm is used to update the model parameters.
Consider any model 	 with nonzero parameters. We first define
the posterior probability of transitions, 
ij from state i to state
j, given the model and observation sequence,


t (i, j) = P(St = i, St+1 = j |O, 	)

= �t (i)aij

∏R
l=1bj (Ot+1(l))�t+1(j)

P (O|	)
. (24)

Similarly, the posterior probability of being in state i at time t,

t (i), given the observation sequence and model, is defined as


t (i) = P(St = i|O, 	) = �t (i)�t (i)∑N
k=1�T (k)

. (25)

Here,
∑T −1

t=1 
t (i) can be interpreted as the expected (over
time) number of times that state Si is visited. Using the above
formulas and the concept of count event occurrences, a new
model 	̄ = (Ā, B̄, 
̄) can then be created to iteratively improve
the old model 	 = (A, B, 
). The Baum–Welch algorithm in
Ref. [44] extends to the multidimensional case based on the
previous independent assumption:

(1) state transition probability:

ā(i,j) =
∑T −1

t=1 
t (i, j)∑T −1
t=1

∑
j 
t (i, j)

, 1� i, j �N , (26)

(2) symbol emission probability:

b̄
(i)
j (k) =

∑
t∈Ot (i)=v

(i)
k 
t (j)∑T

t 
t (j)
, 1� i�R, 1�j �N ,

1�k�M , (27)

(3) initial state probability:


̄j = 
1, (28)

where v
(i)
k are the observation symbols. If we repeat the above

estimation and use 	̄ = (Ā, B̄, 
̄) to replace 	, it ensures that
P(O|	) can be improved until a limiting point is reached. The
Baum–Welch algorithm gives the maximum likelihood estimate
of MDHMM and can be used to obtain the model that describes
the most likelihood human action for given features.

5.2. Action classification using HMMs

We classified the image sequences manually into different
classes and views. The trained model is used to classify the ac-
tions. The forward–backward algorithm or the Viterbi algorithm
can be used to classify the actions from any specified view.

To recognize the input action sequences, the Viterbi algo-
rithm [44] is used. This decoding problem is how to find the
best state sequence, given that an observation sequence O =
{O1, O2, . . . , OT } and a model 	 = (A, B, 
).

q = (q1, q2, . . . , qT ), (29)

where qt is the actual state at time t. We extend the Viterbi
algorithm in the following manner to incorporate multiple fea-
ture vector information. The following equation estimate the
most likely state sequence given an HMM 	 and a series of
observations Ot(l).⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Initilization: �1(i) = 
i

R∏
l=1

bi(O1(l)), 1� i�N,

Recursion:

⎧⎨
⎩�t (j) = max

1� i �N
[�t−1(i)aij ]

R∏
l=1

bj (Ot (l)),

�t (j) = arg max
1� i �N

[�t−1(i)aij ],
(30)

where 
i is the initial probability of being in state i. The model
parameters are adjusted in such a way that they can maximize
the likelihood function for classifying actions using the given
set of training data.

	 = arg max
	a∈allActions

P (O|	a). (31)

In this equation, O represents the unknown feature vector se-
quence of an unknown action and 	a represents one MDHMM
from the set of all known actions. The classifier recognizes the
performed action by finding the model 	 with the highest con-
ditional probability. Therefore, the values of P(O|	a) for all
models have to be computed. This is done by using a Viterbi
decoder as mentioned earlier. Before this task, all model pa-
rameters have to be estimated first. HMM with discrete proba-
bility or continuous density can be used. Discrete symbolizing
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Fig. 8. Left–right HMM structure for an action.

via vector quantization induces degradation of performance.
Therefore, continuous HMMs are used for action recognition.
Continuous observation density is calculated by

bj (o) =
M∑

k=1

cjkN(o, �jk, �jk), (32)

where o is the observation vector being modeled, cjk is the
mixture coefficient for the kth mixture in state j and N is
the Gaussian. The multivariate Gaussian, N(o; �jk, �jk) with
mean vector � and covariance matrix �, is the following:

N(o; �, �) = 1√
2
(n)|�|e1/2(o−�)T(�−1)(o−�). (33)

The maximum likelihood estimates of the average �j and co-

variance �j is �̂j = 1
T

∑T
t=1ot and �̂j = 1

T

∑T
t=1(oj −�j )(oj −

�j )
T, respectively. The left–right HMM with a strict left-to-

right transition constraint and order structure is generally used
to recognize action and speech, which is shown in Fig. 8, be-
cause of a temporal constraint in the action and speech patterns.
The number of HMM states depends on the average action sig-
nal length, the complexity, and the variability of the pattern.
We choose the number of key features of the action sequence
as the number of states.

6. Experimental results and discussion

To illustrate the concepts, procedures, and human action
recognition based on HMMs, we performed experiments on
image sequences of different actions in different viewing di-
rections.

6.1. Databases

6.1.1. KUGDB
The aim of the KUGDB [27] is to form a data set for “state-

of-art” action recognition and gesture recognition. The KUGDB
contains 14 representative full body actions in the daily life of
20 performers. In the database, all the performers are elderly
persons (both male and female) with ages ranging from 60 to
80. The database contains 3D motion data and three pairs of
stereo video data taken at three different directions for each
action using 3D motion capture devices and stereo cameras. The
2D data consist of both video data and 2D silhouette data. The
data set includes three views, 0◦, −45◦, and +45◦, respectively.
The image sequences have 320 × 240 pixel resolutions and a
frame rate of 30 frames per second. The testing set can be any

arbitrary view. We use seven actions for training and testing
purposes, which are shown in Fig. 9.

6.1.2. KTHDB
The KTHDB [6] is one of the largest databases with se-

quences of human actions taken over different scenarios. The
database contains six types of human actions, performed sev-
eral times by 25 subjects in four scenarios given in Table 1. The
sample images are shown in Fig. 10. The image sequences have
160 × 120 pixel resolutions and a frame rate of 25 frames per
second. In KTHDB, there are 25 × 6 × 4 = 600 video files for
each combination of all subjects, actions and scenarios. Each
file contains about four subsequences and used as a sequence
in the experiments. Table 2 presents the sample frame number
for each action and scenario. For more convenience, we show
the minimum and maximum number of frames for any action.

6.2. Estimation of the temporal boundary

We estimate the period or duration by correlation or using the
variation in pixel distribution in the silhouette image sequences.
Let us consider that p is the period. Therefore, the periodicity
relationship becomes, f (t+p)=f (t), where f (t) is the motion
of a point, or energy of an image at any time t. A non-periodic
function is one that has no such period, instead we use the
duration of action.

The brief algorithm for detecting period (or duration) is as
follows: firstly, estimate the silhouette energy or correlation of
image sequence. Secondly, apply smoothing operation to the
similarity plot for periodic action and extract peak points. For
non-periodic action, we apply non-maxima suppression method
and make decision to extract the peak points (starting point and
ending point). We choose multi-scale non-maxima window size
for selecting the peak points, where non-maxima values are
chosen arbitrarily. Now, the period is given by the difference
between starting point and ending point as illustrated in Fig.
11. From the plots shown in Fig. 11, the approximate range of
the period, the starting state, ending state, and phase variations
are estimated.

6.3. Classification results

Fig. 12 shows the confusion matrix of action recognition us-
ing MDHMMs where we use shape flow, CLG motion flow,
and combined features. Each column in the Figure represents
the best match for each test sequence. We use 11 subjects, 7
actions, and 3 views variation for testing. At first, we recog-
nized actions for shape flow and motion flow in arbitrary view
directions. Then, we recognized actions for combined features
in the arbitrary views. As can be seen, there is a clear separa-
tion among different kinds of actions. Among 7 actions to be
classified, the most confusion occurs between walking and run-
ning. The confusion also occurs between ‘sitting on the floor’
and ‘lying down on the floor’ as well as ‘sitting on a chair’
and ‘bowing’. This may occur due to the strong similarity be-
tween the action pair. The correct recognition rate (CRR) for
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Sitting
on a chair Walking

Raising
right hand Bowing

Sitting
on the floor Running

00 view

Lying
on the floor

(SC) (WP) (BW) (SF)(RH) (LF)

–450 view

+450 view

(RP)

Fig. 9. Example images from KUGDB at three viewing directions. The bottom symbols represent the actions on the top.

Table 1
Scenarios in KTHDB

Scenario s1 s2 s3 s4

Description Outdoors Outdoors with scale variation Outdoors with different cloths Indoor

s1

s2

s3

s4

Boxing Jogging Running Walking
Hand
clapping

Hand
waving

(BP) (HC) (JP) (RP) (WP)(HW)

Fig. 10. Example images from KTHDB at four scenarios. The bottom symbols represent the actions on the top.

Table 2
Number of frames in each subsequence of each scenario

Action BP HC HW JP RP WP

Scenario min max min max min max min max min max min max

s1 70 120 80 128 110 140 42 58 35 38 64 104
s2 78 140 64 130 82 136 62 122 45 92 98 180
s3 68 120 85 142 86 136 48 70 30 65 74 128
s4 88 130 85 158 104 138 64 80 40 62 90 115
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Fig. 11. Periodicity (or duration) detection from silhouette image sequences (KUGDB). (a) Running with multiple cycles (ts , te) = {(20, 53), (53, 84), (84,
112), (112,146)} with smoothing. (b) Raising the right-hand action (ts = 6, te = 77). (c) Bowing action (ts = 1, te = 85).

Fig. 12. Confusion matrices for the KUGDB. (a) Shape flow feature. (b) CLG optic flow feature. (c) Combined shape and CLG flow features.

Fig. 13. Confusion matrices for the KTHDB using combined shape and CLG motion flow features: (a) s1 scenario. (b) s2 scenario. (c) s3 scenario.

any action is calculated by

CRR(%) = C/N × 100, (34)

where C is the total number of correct recognition sequences
while N is the number of total action sequences. The CRRs are
82.57%, 76.14%, and 88.29% for shape flow, CLG motion flow,
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Fig. 14. Image sequences of “walking” and “running” from the front view (KUGDB).

Fig. 15. Image sequences of “sitting on the floor” and “lying down on the floor” from the front view (KUGDB).

and combined flow in the arbitrary view directions. We also
have tested our approach by using the KTHDB, since it is one
of the largest human action databases and several researchers
have used this database. We use 11 subjects, 6 actions, and 4
scenarios for testing and 8 subjects for training. The confusion
matrices for six-class actions for the KTHDB are shown in Fig.
13 using combined shape and CLG optic flow features. We use
each scenario and all scenarios for recognizing actions for the
same data mentioned in Fig. 13. The most confusion occurs
between jogging and running as well as jogging and walking,
although it varies at different scenarios. The recognition accu-
racies are 90.17%, 84.83%, 89.83%, and 85.67% for scenarios
s1, s2, s3, and s4, respectively. We use the features which are
invariant to translation, rotation, and scale of the person, there-
fore, scenario s2, which includes the scale-varying action, has
very little effect on recognition performance.

In the testing phase of the experiment, we find that some se-
quences are misclassified, such as walking and running, sitting
on the floor and lying on the floor. These sequences are checked
manually, and it is found that these image sequences are taken
from the front (0◦) view. These situations are shown in Fig. 14.
They may be a result of the high degree of similarity between
walking and running in the image in the front view. Moreover,
all performers are elderly people in the KUGDB and naturally
their walking and running motions are similar. In the case of
“sitting on the floor” and “lying down on the floor”, it is found
that several image frames have strong similarity at the middle
stage of the action, which is shown in Fig. 15. In the front view,
the strong similarity occurs between walking and running, so
recognition rate is lower. But in the side view, it is easier to
distinguish actions.

We have shown the timing data for our method for extracting
both shape and motion flows. In case of shape features, we

Table 3
Range of timing data for feature extraction (KUGDB, image size=320×240)

Feature Shape Motion Combined

Without Zernike moment (s/frame) 0.12–0.14 0.26–0.32 0.40–0.50
With Zernike moment (s/frame) 2.65–2.92 0.26–0.32 2.80–2.84

Table 4
Range of timing data for feature extraction (KTHDB, image size=160×120)

Feature Shape Motion Combined

Without Zernike moment (s/frame) 0.06–0.07 0.06–0.07 0.09–0.11
With Zernike moment (s/frame) 0.62–0.67 0.06–0.07 0.69–0.82

used the invariant Zernike moment which is robust to noise but
the computation cost of Zernike moment is expensive due to
its orthogonal property. Our measurement is implemented in
C/C++ on a 1.70 GHz Pentium IV PC. Tables 3 and 4 present
the timing data of feature extraction procedure.

6.4. Comparison

At first, we compare our human action recognition approach
with other previous researches, along with features selection,
view direction, and recognition rate, irrespective of the captured
video sequences, as given in Table 5. It is difficult to compare
these approaches, since the data sets and environments are dif-
ferent. However, the results can give a general overview and
comparison of some approaches in action recognition. The im-
portant declaration of this work is, “we recognize human ac-
tion from any arbitrary view rather than any specific view with



2250 M. Ahmad, S.-W. Lee / Pattern Recognition 41 (2008) 2237–2252

Table 5
Comparison results of action recognition with some previous researches

Researches Action Feature type View Recognition rate

Ali et al. [17] 7 Angle of three body components Profile view 78.8
Sun et al. [10] – Affine and optic flows Single view 90.0
Masaud et al. [12] 8 Motion Front-parallel 92.8
Yacoob et al. [13] 4 Parametric motion Diagonal 82.0
Zobl et al. [14] 6 Global motion View-dependent 66.0
Sheikh et al. [5] 4 Subspace angle View-independent –
Schüldt et al. [6] 6 Local space-time Multiple scenarios 71.72
Our approach 7 Motion and shape flows (KUGDB) View-independent 88.29
Our approach 6 Motion and shape flows (KTHDB) Multiple scenarios 88.33

Fig. 16. Comparison of confusion matrices for the KTHDB. (a) Niebles’s method; (b) Dollár’s method; (c) Ke’s method; (d) Schüldt’s method; (e) our method.

Table 6
Comparison results of the action recognition using KTHDB

Method Recognition accuracy Scenarios

Niebles et al. [9] 81.50 s1+s2+s3+s4
Dollár et al. [7] 81.17 s1+s2+s3+s4
Schüldt et al. [6] 71.72 s1+s2+s3+s4
Ke et al. [8] 62.96 s1+s2+s3+s4
Our method 88.33 s1+s2+s3+s4
Schüldt et al. [6] 62.33 s2
Our method 84.83 s2

additional variability selection”. Secondly, we compare our
works with some state-of-art action recognition approaches by
using the same database.

In addition, we compare our method against Schüldt et al.’s
[6] in classifying periodic actions. We use the same training
and test sequences as in their paper, which contains eight peo-
ple in the training set and nine in the testing. Each person re-
peats six actions in each of four scenarios. In addition with [6],
we compare our results with the best results from [7,9,8] us-
ing KTHDB. Our results by combined motion and shape flow
are on par with their results obtained by local space time fea-
tures. The comparison of the confusion matrices (s1+s2+s3+s4
scenarios) is shown in Fig. 16. Most confusion occurs between
jogging and running, jogging and walking, and hand clap-
ping and boxing. In our approach, confusion occurs between

jogging and running as well as jogging and walking. The over-
all comparison of different methods is listed in Table 6. Com-
pared to the mentioned researches, our approach yields better
recognition results.

7. Conclusions and future research

This paper addressed robust human action recognition from
multiple view image sequences by using combined shape flow
and CLG motion flow. We also considered some sources of
variability that affect action recognition. This variability in-
cludes the view-directional variation, anthropometry variation,
scale variation, and phase change of action. Based on the com-
bined features, a set of MDHMMs were built for the mentioned
actions, to represent each action from multiple views or each
scenario and enable recognizing from arbitrary views. We first
showed that combined feature information increased the recog-
nition than individual feature by using KUGDB and then we
recognized action by using only the combined features. We rec-
ognized different daily human actions successfully in the indoor
environment as well as in the outdoor environment. The ac-
tion recognition rate compared with some previous researches
is not much higher but it was shown that we recognized actions
from multiple views rather than a set view. Moreover, we rec-
ognized action at a higher rate with the same kind of data. The
recognition rate of combined features is higher than the rate
obtained by either shape or motion feature using the KUGDB.
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This result showed that our algorithm is robust to variations in
view and duration. Our proposed method for action recognition
is flexible since it can be adapted to practical applications of
human movement, human action recognition, and so on. This
is different from other shape-based or motion-based variation
approaches where analysis is done at a single level. We included
the features of silhouettes and original images when a person
performs action in different speed variation, change of phase
variation, i.e. the starting and ending phase variation of actions.
This enforces the robustness of the action recognition.

Basically, action recognition applications require the devel-
opment of systems which are fast, can handle a variety of ac-
tions, need a limited number of parameters, need as fast as
possible learning stage, and are robust to environment varia-
tion. In our approach, we tried to full-fill the requirements of
such a system. Despite of robustness of the system, we faced
the problem of recognition in a few actions which occurred in
the fronto-normal view. The current complexity of our exper-
iment is the optimal number of features, and styles of action,
although the selected features are robust for action recognition.
Our future work includes the interaction of multi-view learn-
ing using the adaptable hidden Markov model with complex
multiple human actions.
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