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Abstract

In this paper, we propose a space-variant image representation model based on properties of magnocellular visual pathway,
which perform motion analysis, in human retina. Then, we present an algorithm for the tracking of multiple objects in the
proposed space-variant model. The proposed space-variant model has two e1ective image representations for object recognition
and motion analysis, respectively. Each image representation is based on properties of two types of ganglion cell, which are
the beginning of two basic visual pathways; one is parvocellular and the other is magnocellular. Through this model, we can
get the e3cient data reduction capability with no great loss of important information. And, the proposed multiple objects
tracking method is restricted in space-variant image. Typically, an object-tracking algorithm consists of several processes such
as detection, prediction, matching, and updating. In particular, the matching process plays an important role in multiple objects
tracking. In traditional vision, the matching process is simple when the target objects are rigid. In space-variant vision, however,
it is very complicated although the target is rigid, because there may be deformation of an object region in the space-variant
coordinate system when the target moves to another position. Therefore, we propose a deformation formula in order to solve
the matching problem in space-variant vision. By solving this problem, we can e3ciently implement multiple objects tracking
in space-variant vision. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In developing an active vision system, there are three
main requirements imposed on the system: high resolution
for obtaining details about the regions of interest, a wide
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Celd of view for easy detection of a looming object or an
interesting point, and the fast response time of the system
[2]. However, a system that uses a traditional image repre-
sentation which has uniformly distributed resolution cannot
satisfy such requirements. Because the image size must be
very large in order to include details of interest region and
whole environment, it is impossible to process whole image
in real-time. Therefore, many methods to solve these prob-
lems have been developed. Some methods use wide-angle
camera with an additional zoom camera to process a wide
range of environments and detailed interest region. But these
methods are not ultimate solutions for these problems.

There have been many research works on e1ective image
representation models based on the biological vision system
that satisCes all of the requirements, among which is the
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space-variant model using the multi-resolution property of
the biological vision system.

Animals including humans do not transfer whole input
information but only a few data from eyes to the brain by
data reduction (about 128:1) due to structural properties of
retina. For example, in monkey’s retina, there is a central
region called “fovea” in which the photoreceptors are most
densely packed, and the photoreceptor’s density becomes
smaller, decaying towards the outer periphery. The log(z)
model [3], which is the Crst model considering such proper-
ties of biological vision system, was developed. And many
variations of this model have been investigated. But, these
models have considered only a few properties (many im-
portant properties have been ignored). Thus, in this work,
the new space-variant image representation model is pro-
posed, which considers some important properties that were
not considered in previous models.

Such space-variant models have recently been applied to
many active vision applications such as moving object track-
ing, vergence control, etc. In a typical active tracking sys-
tem, there is only one target to track because the camera
head continuously Cxates on one object at a time. In order to
transfer its Cxation to another object, it is important to keep
track of the positions of the objects moving in the back-
ground. This gives rise to the necessity for multiple objects
tracking. In multiple objects tracking, new problems are in-
troduced, such as multiple objects detection, and matching
between the current target object and the detected object in
the space-variant coordinate system.

In space-variant vision, multiple objects detection is di3-
cult to achieve, because a motion vector in the space-variant
coordinate system is represented di1erently from that of the
Cartesian one in size and direction. Consequently, it is di3-
cult to segment a moving region directly in the space-variant
coordinate system. The matching problem is also very dif-
Ccult, because there may be deformation of an object re-
gion in the space-variant coordinate system when it moves
to another position, although the target object is rigid. In
this paper, we propose an e3cient algorithm that overcomes
the di3culties mentioned above.

2. Related works

Most of the space-variant image representation models
are based on Schwartz’s log(z) model. These models are
divided into two models, one is conformal mapping, and the
other is overlapped mapping.

First, we consider a conformal mapping. A conformal
mapping is a function of a complex variable that has the
property of preserving relative angles. There is Schwartz’s
log(z) model [3] which is the representative of space-variant
model. This model uses complex-logarithmic function, w=
log(z). It has size and rotation invariant properties. But it
needs a uniformly distributed resolution patch at the center
of the image as shown in Fig. 1, because it has singularity at

Fig. 1. Schwartz’s log(z) model.

Fig. 2. Bolduc’s overlapped mapping model.

origin due to characteristic of complex-logarithmic mapping
function.

We also consider overlapped mapping models. Most of
the space-variant models belong to this category. The most
representative model is Bolduc’s model [2]. It is very simi-
lar to Schwartz’s model, but, as shown in Fig. 2, its recep-
tive Celds are circular in form and adjacent receptive Celds
overlap each other. Therefore it is more similar to biological
vision system.

Another overlapped mapping model is that of Wilson [4].
This model is very similar to Bolduc’s model, but it uses
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log(z + a) mapping function. This mapping function needs
no uniform resolution patch image, solving the singularity
problem in log(z) model. But there is a disadvantage of
discontinuity between the left and right planes of an image.

Recently, Yamamoto’s model [5] was proposed. This
model is di1erent from other overlapped models, because of
the existence of photo-receptor layer in front of transform
layer.

All of the above models use the simpliCed property of
biological vision system, considering only the fact that the
photoreceptor’s density is high in the foveal area and low in
the peripheral area. These models do not consider the sep-
arated visual pathways. Thus, we propose a more e3cient
and biologically plausible model by including more proper-
ties of biological vision system.

These space-variant models have been applied to various
areas, such as active vision, visual perception, etc. Panerai
et al. [6] developed a technique for vergence and track-
ing in log-polar images. Lim et al. [7] proposed a tracking
algorithm for space-variant active vision. Recently, Jurie [8]
proposed a new log-polar mapping procedure for face de-
tection and tracking.

There have also been many works on multiple objects
tracking. Recently, Bremond and Thonnat [9] presented
a method to track multiple non-rigid objects in a video
sequence, and Haritaoglu et al. [10] developed Hydra, a
real-time system for detecting and tracking multiple people.

3. Multiresolutional properties of biological vision
system

The human retina consists of three layers constructed from
six types of cells (photoreceptor, horizontal cell, amarcrine
cell, interplexiform cell, bipolar cell, ganglion cell). The
light is translated into the neural signal at photoreceptor.
Then, this signal is transferred to the brain through the many
cells in the retina [11]. We remember that the number of
photoreceptors, which transform light into neural signal, is

Fig. 3. Distribution of photoreceptors by eccentricity.

greater than the number of ganglion cells, which are the Cnal
gate of neural signal’s transferring path in retina (the ratio
is about 128:1). According to above fact, we can say that a
few data are transferred to the brain, after data are reduced at
retina. Thus, in this chapter, we investigate the data reduction
property of retina through physiological evidence.

3.1. Distribution property of photoreceptors

Photoreceptors consist of cone and rod cells. Cone cells,
which respond to color and bright light, are more important
than rod cells. These cone cells are densely packed in the
fovea, and their density rapidly decays towards the outer
periphery. This property is shown in Fig. 3 [12]. Most of the
previous space-variant models are based on this distribution
property of photoreceptors.

3.2. Properties of ganglion cells

Ganglion cells are also densely packed in the foveal region
and their density decays towards the outer periphery. As
shown in Fig. 4, it is well known that the decay rate is
inversely proportional to the square of eccentricity [13].

There are two types of ganglion cells, one is P cell (Par-
vocellular cell) and the other is M cell (Magnocellular cell).
The former is the beginning of the recognition path and the
latter is the beginning of the motion analysis path. These
cells have di1erent properties. The main di1erence is the size
of its receptive Celd. As shown in Fig. 5, there is a speciCc
relation between the size of receptive Celd and eccentricity.
Watson [14] explained this relation with the following, so
called, scaling function, where e and s are eccentricity and
scaling factor, respectively.

s = 1 + ke: (1)

Suppose that the size of receptive Celd in the foveal region
is w, the size of receptive Celd at eccentricity e is sw.
In this paper, we use this scaling function in order to

design a space-variant image representation model, and we
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Fig. 4. Distribution of ganglion cells by eccentricity.

Fig. 5. Size of receptive Celd by eccentricity.

use an approximated value from physiological experiments
data for constant k.

4. Proposed space-variant representation model

Previous well-known space-variant models are based on
simpliCed properties of ganglion cell where its receptive
Celd size is small in the fovea region and larger towards the
outer periphery. But there are two types of ganglion cells
(M and P cells), which have di1erent purpose of process
and receptive Celd size. Thus, in this paper, we design an
e1ective model better than previous simpliCed models, by
overcoming their limitations.

Fig. 6. Receptive Celds in the peripheral region.

4.1. Modeling of receptive �eld

The size of receptive Celd is determined by scaling func-
tion, Eq. (1). We model the size of receptive Celd using this
scaling function, and we determine the scaling function by
analysis of data from physiological experiments [15] about
receptive Celd of M and P cells. First, we get the approxi-
mated scaling functions in Eqs. (2) and (3), where the sub-
script letters M and P mean M cell and P cell, respectively
(specially, from the data from Perry’s physiological exper-
iments, kM is about 0.44 and kP is about 0.78).

sM = 1 + kMe; (2)

sP = 1 + kPe: (3)

Suppose that the receptive Celd size of M and P cells in
the foveal region is wM0 and wP0, respectively. The relations
between the size of receptive Celd and eccentricity are given
in Eqs. (4) and (5) (specially, from the data of Perry’s phys-
iological experiments, wM0 is about 0:07

◦
and wP0 is about

0:01◦).

wM = wM0 + wM0kMe; (4)

wP = wP0 + wP0kPe: (5)

These relations of M and P cells are the same. Thus, we use
the same model for M and P cells, and only parameters of
its model are di1erent. And, we consider the model for the
foveal region and the peripheral region separately, because
the distribution of receptive Celd is uniform in the foveal
region, and is more sparse towards the outer periphery.

4.1.1. Peripheral region
As shown in Fig. 6, the size of receptive Celd is larger

towards the outer periphery. Eq. (6) is the relation between
the eccentricity of the (n − 1)th ring and the nth ring. Sub-
stituting Eq. (7) which means the receptive Celd size by
eccentricity for wn in Eq. (6), then we get Eq. (8) about
eccentricity of the nth ring, where Rn is the eccentricity of
the nth ring, wn is the receptive Celd size at the nth ring, w0
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Fig. 7. Receptive Celds in the foveal region.

is the receptive Celds size at the foveal region, k is constant
and o is the overlapping factor. When the overlapping factor
is one, it means that receptive Celds are completely over-
lapped, and when it is zero, it means that receptive Celds
are not overlapped.

Rn−1 +
wn−1

2
− own +

wn

2
= Rn; (6)

wn = w0 + w0kRn; (7)

Rn =
2(1− o)w0 + (2 + w0k)Rn−1

2− (1− 2o)w0k
: (8)

Because the number of receptive Celds at each ring is the
same, Eq. (9) is established, where round function means
the rounding o1 operation, and R0 is the size of the foveal
region.

K = round
(

2�R0

(1− o)(w0 + w0kR0)

)
: (9)

4.1.2. Foveal region
As shown in Fig. 7, the size of receptive Celd is the same

in the foveal region regardless of eccentricity. Therefore the
number of receptive Celds at each ring varies according to
eccentricity. This relation is shown in Eq. (10). Also, we
can generalize the function about eccentricity of each ring
to Eq. (11), considering the size of receptive Celd and the
overlapping factor.

Rn = Rn−1 − R0

round(R0=(1− o)=w0)
; (10)

Kn = round
(

2�Rn

(1− o)w0

)
: (11)

4.2. Template of space-variant representation

We can compose the mapping templates which transform
a traditional image to a space-variant image using the con-
structed model. We compose two types of mapping template

which are called M- and P-Map. Each template is based on
properties of M-cell and P-cell, respectively. We can obtain
two types of image; one is used for object recognition and
the other is for motion analysis. Given an image of 512×512
pixels having a viewing angle of 100◦, and an overlapping
factor of 0.3, we get the templates as in Figs. 8 and 9.

5. Deformation formula in space-variant vision

There may be a deformed movement in the space-variant
coordinate system, which corresponds to a simple translation
in the Cartesian coordinate system, as shown in Fig. 10.
We should be aware of the deformation formula in order
to analyze the movement of a region in the space-variant
coordinate system.

In Fig. 11, we know the deformed position of a certain
point in the space-variant coordinate system that corresponds
to the translated position in the Cartesian coordinate system.
The radius R and the angle � of the given point (�,�) in the
space-variant coordinate system can be obtained using the
mapping functions (6) and (7) given below

R = SMR(�) =
�∑

n=1

abn−1 + R0b
�

=
(a + bR0 − R0)b� − a

b − 1
; (12)

� = SM�(�) =
2�
K

�; (13)

where a = 2(1 − o)w0=(2 − (1 − o)w0k) and (2 + w0k)=
(2− (1−2o)w0k). Then, the position(R′, �′) of the point in
the Cartesian coordinate system, after the movement of the
point by Px and Py, can be found easily, as follows:

R′ =
√

(x +Px)2 + (y +Py)2; (14)

�′ = arctan
(

y +Py
x +Px

)
; (15)

where x = R cos �, y = R sin �. From the equations given
above, the deformed position(�′, �′) in the space-variant
coordinate system can be derived as

�′ = SM−1
R (R′)

= logb

(
(b − 1)R′ + a
a + bR0 − R0

)
; (16)

�′ = SM−1
� (�′) =

K
2�

�′: (17)

Finally, the deviation (P�, P�) in the space-variant coor-
dinate system can be obtained as follows:

P� = SM−1
R (R′)− �; (18)

P� = SM�R
−1(�′)− �: (19)
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Fig. 8. Mapping template of M-Map.

Fig. 9. Mapping template of P-Map.
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Fig. 10. (a) A movement in the Cartesian coordinate system, and (b) the deformed movement in the space-variant coordinate system, which
corresponds to (a).

Fig. 11. Deformed movement in the space-variant coordinate cor-
responding to movement in the Cartesian coordinate.

As we have shown above, the deformed deviation (P�, P�)
of a point (�, �), which comes from a translation(Px, Py)
in the Cartesian coordinate system, can be found when the
point (�, �) and the translation (Px, Py) are given.

6. Moving object detection

6.1. Motion estimation in space-variant vision

Horn and Schunk’s optical Qow method [16] is used for
motion estimation. In addition, the optical Qow vectors in

Fig. 12. Vector transformation from the space-variant coordinate system to the Cartesian coordinate system.

the space-variant coordinate system are transformed to the
Cartesian coordinate system in order to segment a moving
region and to calculate a mean Qow vector easily, as shown
in Fig. 12.

A vector AS =A�a�+A�a� in the space-variant coordinate
system can be represented as a polar coordinate vector AS =
A�(Rn − Rn−1)a� + A�K�a�. Then, it is easily transformed
to a Cartesian coordinate vector AC = Axax + Ayay where

Ax = AS · ax

= A�(Rn − Rn−1)a� · ax + A�K�a� · ax

= A�(Rn − Rn−1) cos(K��)− A�K� sin(K��); (20)

Ay = AS · ay

= A�(Rn − Rn−1)a� · ay + A�K�a� · ay

= Ar(Rn − Rn−1) sin(K��) + A�K� cos(K��): (21)

6.2. Motion estimation in space-variant vision

For moving region segmentation, a region-based segmen-
tation and labeling are employed. As shown in Fig. 13 we
construct a binary optical Qow map, then morphological
post-Cltering is applied. Finally, a labeled region map is ob-
tained by using a connected component analysis.
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Fig. 13. Region-based moving region segmentation.

7. Multiple objects tracking

7.1. Motion estimation in space-variant vision

For multiple objects tracking, we construct a dynamic tar-
get model which consists of the texture of an object region.
This target model is updated continuously in time during the
tracking process. It is deCned by

�t(�; �) = wI(�; �) + (1− w)D�t−1 ;PP(�; �); (22)

where �t(�; �) is the intensity value at (�; �) in a texture
template, I(�; �) is that of the input image, D�t−1 ;PP(�; �)
is that of a deformed template at (�; �) and w(0¡ w ¡ 1)
is a weight value.

7.2. Deformable matching of moving targets

For matching between the target model and a detected
object, we use a correlation technique, the quadratic di1er-
ence, deCned by

Cij =

∑
�;�∈�(I(� + i; � + j)− D�;PP(�; �))2

N 2
; (23)

where N is the number of pixels in the target template �
and i; j ¡ W , W is the size of a search window. When Cij

is smaller than a certain threshold value, the detected object
is matched with the current target. The target model is then
updated to the detected object (Fig. 14).

Fig. 14. Examples of extracted target model.

Now, we can track multiple objects by using the detection,
prediction, matching, and updating loop.

8. Experimental results and analysis

Our experimental system consists of a Pentium III
500 MHz PC with a Matrox Meteor II image grabber, and
Cannon VC-C1 CCD camera.

The performance of multiple objects tracking in
space-variant active vision is shown. In our experiment,
people moving around in an indoor environment are chosen
as target objects to track. During the experiment, they are
walking across the Celd of view in various situations.

Fig. 15 shows the result images of each sub-process of
the tracking process. The images in the third row are binary
optical Qow maps, each of which is constructed by transfor-
mation of the directions of the optical Qow vectors into a
gray-level image with an appropriate threshold. The images
in the forth row are morphological post-Cltered maps, each
of which is constructed by a morphological closing opera-
tion. Each of these maps is used as an extracting mask for
target model construction. Finally, the images in the last row
are segmented target models. The target model is used for
matching between the tracked objects in the previous frame
and the detected objects in the current frame. Throughout
these processes, multiple objects tracking is accomplished.

Fig. 15. Result images of sub-processes of our system: (a) is a
Cartesian image; (b) is a space-variant image; (c) is an optical Qow
map; (d) is a morphological post-Cltered map; (e) is an extracted
target region and (f) is an extracted target model.
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Fig. 16. Tracking sequence: images on odd row are tracking se-
quences and images on even row are reconstructed images from
detected target region.

Fig. 16 shows a sequence of images taken by the CCD
camera. As shown in the Cgure, the system did not lose the
targets. In the previous moving object tracking algorithms
using traditional image representation, it is di3cult to detect
and track moving objects with small motion in real-time.
So, in oder to implement real-time system, the system could
detect and track moving object roughly, because it must pro-
cess input image in coarse level. But, the proposed algorithm
can detect and track moving objects with small motion in
the region of interest; also, it can be processed in real time.
However, it detected only one target for two objects upon
occlusion, since occlusion is not considered in our system.
Future research will take this into account for a better track-
ing performance.

9. Conclusions and further researches

In this paper, we have shown multiple targets tracking in
space-variant active vision in a low-cost PC environment.
Motion detection is very e3cient because of using opti-
cal Qows in the space-variant coordinate system. Consid-
ering deformation in the space-variant coordinate system,
caused by the movement of the target region, matching in
space-variant vision becomes very e3cient and simple. Nev-
ertheless, the proposed algorithm does not consider occlu-
sion problems–solutions which should be included for bet-
ter tracking performance. Also, it has the drawback that it
cannot detect the motion of small objects in far periphery,

Fig. 17. Motion of small object in far periphery.

as shown in Fig. 17. In this case, we should solve this prob-
lem by enhancing the processing rate by selective attention
technique.
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