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Abstract-—In recent years, there have been several attempts to extend one-dimensional hidden Markov
model (HMM) to two-dimension. Unfortunately, the previous efforts have not yet achieved a truly
two-dimensional (2-D) HMM because of both the difficulty in establishing a suitable 2-D mode! and its
computational complexity.

This paper presents a new framework for the recognition of handwritten characters using a truly 2-D
model: hidden Markov mesh random field (HMMRF). The HMMRF model is an extension of a 1-D HMM
to 2-D that can provide a better description of the 2-D nature of characters. The application of HMMRF
model to character recognition necessitates two phases: the training phase and the decoding phase. Our
optimization criterion for training and decoding is based on the maximum, marginal ¢ posteriori probabil-
ity. We also develop a new formulation of parameter estimation for character recognition. Computational
concerns in 2-D, however, necessitate certain simplifving assumptions on the model and approximations on
the implementation of the estimation algorithm. [n particular, the image is represented by a third-order
MMREF and the proposed estimation algorithm is applied over the look-ahead observations rather than
over the entire image. Thus, the formulation is derived from the extension of the look-ahead technique
devised for a real-time decoding.

Experimental results confirm that the proposed approach offers a great potential for solving difficult
handwritten character recognition problems under reasonable modeling assumptions. «; 1998 Pattern

Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The success of automatic speech recognition systems
based on hidden Markov model (HMM)'**? has mo-
tivated recent attempts to apply similar methods to
character recognition® © and document image pro-
cessing.” The central issue in adapting any type of
speech technology to image analysis is that speech is
a one-dimensional (1-D) signal whereas images are
two-dimensional (2-D). In the case of HMMs, a ma-
jority of approaches to technology transfer have been
focused on a subset of character recognition problems
that may be viewed as actually one-dimensional.
While encouraging results have been obtained on this
problem, the characteristic that HMM is suitable for
1-D time series is unlikely to lead to a general frame-
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work for character recognition. Thus, a mathematical
2-D model of the images with finite number of para-
meters is desired.

More recently, there have been several attempts to
extend the 1-D HMM to two-dimension. Unfortu-
nately, the previous efforts® '® have not yet achieved
truly 2-D HMM because of the difficulty in establish-
ing a suitable 2-D model with reasonable computa-
tional complexity.

2-D Markov random field (MRF) model is a natu-
ral extension of 1-D autoregressive model to 2-D.(! !
The MRFs have become more and more popular
during the last few years in image processing.!?
A good reason for that is that such a model is the one
which requires the less « priori information on the
world model. In addition, the MRFs are well suited
for representing the spatial continuity that is the char-
acteristic of most images. In order to take the com-
putational advantage of the recursive procedures in
image processing, it is appropriate to model the image
as a causal MRF'® which is characterized by causal
transition distributions. Since, however, there is no
natural order in 2-D, the concept of causality needs
refinement. There are two causal 2-D Markov chains
in the literature; the Markov mesh random field
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(MMRF)'¥ and the nonsymmetric half-plane
(NSHP) Markov chain.!* They differ in both their
“past” and local state region as shown in Fig. 1.9

Of main interest within this paper is the MMRF,
a sub-class of MRF models that was first proposed by
Abend et al. in 196549

The MMRF model of images in image classifica-
tion is very similar to the HMM of speech in speech
recognition. An observed image is commonly
modeled by two layers of stochastic processes: the
observation process that describes the variation of the
image and the MMRF that describes the statistical
characteristics of the true image, just like the observa-
tion layer and the hidden layer of the HMM. We refer
to this type of two-layered image model as the hidden
Markov mesh random field (HMMRF) model. In an
HMMRF model, the hidden layer is modeled by an
MMREF that is characterized by initial and transition
probabilities, and the observation layer is defined as
a probabilistic function of the MMRF.

In this paper, we present a new framework for the
recognition of handwritten characters using a truly
2-D model. Our work has been largely inspired by
Devijver’s work!® for the modeling of digital images
and image sequences using HMMRF model. In spite
of the successful demonstration of the HMMRF
model in the restoration, segmentation and modeling
of static images, there has been no attempt to apply
it to character recognition problem except for the
attempt by the authors of this paper.'”’ The main
reason is that efficient parameter estimation algo-
rithms such as the Baum-Welch algorithm"'® in 1-D
HMM do not exist in 2-D HMMRF model. The
application of HMMRF model to character recogni-
tion necessitates two phases: the training phase and
the decoding phase. Our optimization criterion for
training and decoding is based on the maximum,
marginal a posteriori probability. The criterion can be
viewed as an approximation to the maximum likeli-

(m, n)

(a)

[] past at (m, n)

local state at (m, n) ™
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hood (MLE) criterion. We also develop a new formu-
lation of parameter estimation for off-line character
recognition. Computational concerns in 2-D, how-
ever, necessitate certain simplifying assumptions on
the model and approximations on the implementa-
tion of the estimation algorithm. In this paper, the
image is modeled as a third-order MMRF which is
characterized by causal conditional distributions, and
the proposed estimation algorithm is applied over the
look-ahead observations rather than over the entire
image. Thus, the formulation is derived from the ex-
tension of the look-ahead technique devised for a real-
time decoding. We attempt to illustrate how the ideas
of HMMRF model can be applied to the problems of
off-line handwritten character recognition.

The paper is organized as follows. In Section 2 we
give the motivations for this work and review the
related works on off-line character recognition using
HMM. In Section 3 HMMRF model is introduced
and the two fundamental problems of the HMMRF
model are discussed. Section 4 describes a decoding
scheme which has been developed for an efficient
estimation of the states. In Section 5, we raise the issue
of parameter estimation and propose a new algorithm
for estimation of the model parameters. In Section 6,
we present experimental results demonstrating the
effectiveness of the proposed estimation algorithm
and the performance comparison of the proposed
HMMRF-based approach with the HMM-based ap-
proaches. Finally, conclusions and further researches
are discussed in Section 7.

2. RELATED WORKS

In this section, we review recent developments in
character recognition in the framework of HMM (see
Fig. 2).

HMMs have been widely used for automatic speech
recognition,'""* and have proven successful in dealing

(b)

Fig. 1. {a) Regions of support of past and local state of MMRF. (b) Regions of support of past and local
state of NSHP Markov chain.

. N Pscudo 2-D HMM
HMM I—' Pseudo 2-D HMM '—) + MMRF F ?

Fig. 2. Evolution of HMM.
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with the statistical and sequential aspects of speech
signal. Based on its success in speech recognition,
a question that arises naturally is how well these
stochastic models would work on problems in charac-
ter recognition.

Recently, there are many on-going researches to
recognize text,**!® handwritten characters*-*® or
handwritten words®>-¢!'1 by using HMM-based ap-
proaches. While the recognition of handwritten words
has a large amount of similarity with that of speech,
there are also significant points of departure. The
most notable of them is the 2-D nature of the charac-
ter image. To model the images with HMM, we have
to either recover the temporal information, or define
a consistent sequence from static images. The former
is known to be very difficult to solve using only
heuristics on a raw image or a skeletonized image?"’
because of numerous ambiguities just as in the prob-
lem of recovering 3-D information from 2-D image.
The most conventional method of the latter approach
is to split the word image into a sequence of overlap-
ping vertical frames.??' However, the frames may lose
the spatial dependency of pixels in relative proximity
of each other and contain the information capturing
only the local features of the image. In this regard, 1-D
HMM has limited capability of representing the 2-D
nature of the static images.

The 2-D nature of the character recognition prob-
lem leads naturally to a 2-D structure for the HMM.
It has been shown, however, that a fully connected
2-D HMM would lead to an NP-complete problem.®
To avoid this problem, a model with reduced connect-
ivity has been proposed. It is called “pseudo-2-D
HMM” or “planar HMM”.*'? Figure 3 shows the
structure of a pseudo-2-D HMM, and its correspond-
ence with a sample data. One of the main shortcom-
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ings of the pseudo-2-D HMM is that image lines are
assumed to be conditionally independent of each
other whereas in an MRF each pixel is dependent on
its neighbors of adjacent lines and columns. In addi-
tion, the pseudo-2-D HMM has difficulty in estima-
ting model parameters rather than in assigning states
to image pixels.”?* Although they are not fully con-
nected 2-D networks, they have been shown to be
general enough in characterizing variations of the
printed text recognition.

In a more recent work, Gilloux has proposed a
handwritten character recognition method based on
pseudo-2-D HMMs and Markov meshes.'** He used
the pseudo-2-D HMM to assign states to pixels and
then the Markov mesh to estimate the probability of
generating the image and the associated states. In the
paper, the Markov mesh is defined through the prop-
erty of dependence between states and super-states of
neighboring pixels. While this method has the advant-
age of taking into account the 2-D nature of charac-
ters, the model does not likely to capture the 2-D
nature of characters satisfactorily.

In this paper we describe a new framework using
a truly 2-D model applicable to off-line handwritten
character recognition problems. Since the 2-D model
used here is well-suited for representing the spatial
continuity of images, it offers a great potential for
solving difficult handwritten character recognition
problems.

3. HIDDEN MARKOV MESH RANDOM FIELD MODEL

In this section, we first give a brief definition of
MMRF, and then extend the concept of the MMRF
to HMMRF.

Fig. 3. Structure of a pseudo 2-D HMM.
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Let us consider a random field Q = {w,, ,} defined
on a finite M xN integer lattice L = [(m n)
l<m<M, 1< n< N} Let

VYon={k 1l <k<morl <l<n} forimneL.

Then, a third-order MMRF can be defined as follows.

Definition 1. € is « third-order MMRF if and only if
P((')nnn | Wy 15 (]\, l) € \]Jm.n’ = P((Um.n I Wy 1 (I\, 1) € AnLn]
for all(m, nye L, (N

where A, = {(m,n — 1), (m — L,n),(m — L,n — 1)}

The A,,.,’s at the boundary (i.e. form=1orn=1)
have different configurations from those at the in-
terior sites. At the boundary sites, P(w,,.,| w1, (k, 1)
€ A,,..,) 1s specified as follows:

P((”m.n | (2P (ka [) € Am.n)

Plw,, ) ifm=n=1,

={ PlDpul Omn-1) f n>m=1,

Pl Om—1.0) fm>n=1

Figure 4 illustrates the sets of random variables asso-
ciated with a third-order MMRF.

3.1. Elements of a third-order HMMRF model

It is assumed that = {m,, ,: (m, n)e L} is a third-
order MMRF with known transition probability
P(Omnlwny, (k1)eA,.,) and initial probability
P{w; ). In an HMMRF model there is an observa-
tion array of random variables, X, which is a probabil-
istic function of the MMRF Q.

Following the notational framework introduced by
Rabiner'? for 1-D HMM, the elements of a third-
order HMMRF model can be formally defined as
follows:

S=1{gq.r,....w, y, z}: the finite state (label) space,

IS =39

V = {{;}: the discrete set of possible observation sym-
bols, i = 1,2, ....1

X =X ={X,. .:(mn)eL}: M x N array of obser-
vation symbols {;.

Q=0N={w, ,: (mneL): MxN array of pixel
states m,, , € S.

A ={Pyr. Py P, the 2-D transition probabil-
ity distribution of states where

P,,: the transition probability distribution of states
for the first column,
Py, =Ploy 1 =qlw,-1.,=r) forall ¢q,resS,

P, the transition probability distribution of states
for the first row,

Pyu=Plwi,=qlow, -1 =1) forallg.teS,
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Wy W2 By p-y O, Wy

Wy, 02 Wyny Wy )N

O, Omey2

Op)  Om2 W N
W) W2 Oyn Dy N

Fig. 4. Sets of random variables associated with a third-
order MMRF.

P,+.s..: the transition probability distribution of states
for internal sites except for the first column and the
first row,

O 1n-1 =8 Wy g = ">

Opyon-1 = f

Pq rsa = P<(’)m.n =4

for all g.r, s, 1€ S.

B = {p ()} the observation symbol probability dis-
tribution where

‘:i | Wy oy = ‘l)’

pq(gi) = P(Xm,n =

forall geS.
[T ={P,}: the initial state probability distribution
where

P,=Plw;=q) forallqes.

For convenience, a compact notation of parameter set
I" = (A, B, I1) will be used.

3.2. Problems for HMMRF models

Given the form of HMMRF model of the previous
section, two problems have to be addressed when
using HMMRFs for character recognition.

® Parameter estimation problem---Given the observa-
tion array X, how do we adjust the model para-
meters I = (4, B, 1) to maximize P(X|I')? This
problem is to estimate the parameters of the model
that best fits observed training data.

® Decoding problem—Given the observation array X,
what is the most likely state array Q according to
some optimality criterion? This problem can be
viewed as devising a real-time and efficient scheme
for computing maximum « posteriori (MAP) esti-
mate of states.
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These are similar to the problems for HMMs. We will
first deal with the decoding problem and return to the
parameter estimation problem.

4. EFFICIENT DECODING ALGORITHM

Image decoding is a general framework to solve
low-level vision tasks, such as image classification,
edge detection, etc. The decoding problem will be to
decide the pixel states or labels given the information
comprised in the observations. Each pixel (m,n) is
associated with an unknown state ,, , and a known
observation (feature/feature vector) X, containing
imperfect information about the corresponding state.

4.1. Problem formulation

As defined in previous section, X denotes an obser-
vation array, and © denotes a state array that could
have caused X. The general task of the decoding
problem is to find a state array €2 that would maxi-
mize the posterior distribution P(2|X, I'). But since

PX.Q|T)
PIX.T) =—F— 2
(] ) PX) (2)
and P(X) does not depend on €, we might as well find
Q that maximizes P(X.Q|T) as

PX. QT =PX|QT) PQT)

M N

= H II P((')m.n ' et (l\ [) € A'”'")

m=1n=1

X pl'lm‘,,(X"l. n)

N

P((”l.l)pm,_,(Xl.l) n Pw, Joia

n=2

M
X Pw _,‘(Xl.n) l_l Pmm, Chm v,va,,, n(X"'~ l)
m=2

M [\
X 1—[ I I Pl‘lm Al O 1Gm La@m 1a
m=2n=2
X P (Xm. u) . (3)

Let ' denote the set of all possible state arrays Q in
I Then the state array £ that best explains the
observation array X can be estimated as

Q « argmax P(X. Q|T), (4)
Qe

and the observation likelihood P(X|T') is approxim-
ated as

PX|T) o PX, Q| T) (5)

which represents the probability of the best configura-
tion or the maximum likelihood state array.

There are several possible optimality criteria for
solving equations (4) and (5). The obvious choices arc
(i) the state array that has overall maximum probabil-
ity given the observation array, and (ii) that in which

1853

the state at each individual pixel has maximum prob-
ability given the observation array.”** In the Bayesian
framework, (i) corresponds to MAP estimation,
whereas (ii) maximizes the marginal posterior prob-
ability at each pixel. We will find the optimal state
array according to the criterion (ii).

Smoothing algorithm'?% is based on the computa-
tion of P(tu..| X¥Y), the « posteriori distribution
of individual signal values, given the entire observa-
tion X4{\*. However, because of overwhelming com-
putational difficulties in implementing the smoothing
algorithm on an image matrix, we make certain ap-
proximations such as processing the image in narrow
strips'?® or look-ahead data.!'®

The objective in this section is to compute
Pl o | X557 %), the a posteriori distribution of the
state o, , at pixel (m, n) given the look-ahead data
X Hhn=h for each pixel in the lattice. For the model
under consideration the « posteriori distribution
P{, | X557 k) can be calculated recursively using
the so-called “fixed-lag” smoothing approach.

4.2. An efficient decoding algorithm using look-ahead
technigue

For the fixed-lag smoothing problem, we use the
decoding algorithm based on the “look-ahiead” tech-
nigue''® which enable an efficient estimation of
MMREF states in real-time. The fixed-lag smoothing
algorithm described in this paper takes the estimate of
w,, » as the mode of the « posteriori distribution
P | X558 for k = 1. In particular, it is called
the onc-row one-column look-ahead technique, as
the state of pixel (m, n) is not fixed until (m + 1,1 + 1)
has been reached. The look-ahead decoding algo-
rithm recursively computes the a posteriori distribu-
tion of the individual pixel values given the observed
look-ahead image, under an additional assumption
that columns of the scene constitute a vector Markov
chain.

The classification of pixel (m, n) will be

Oy = arg max Py, = g | X7t (6)
ge!

foral l<m<M-—land 1 <n<N— 1
For the purpose of this work, let us employ the
following notations as used in Devijver’s work:!'®

m.n
Xl.l),

Oy—1in—1 =8 Oy n=1"F

Hm.n([[-, IS, f) = P<

Oy p—1 =1 Oy = (4
2<m<Mand2<n<N

G,,,_,,(I‘, s, 1)

Op—1n—1 =8 Wy g =
= P(

Dyp—1 =1

”
! XT: ’1’ \\{XIH," })-t
2<m<Mand2<n <N

Ym. n(q! r)

It

P((')m.n*l =1 Oy =4 | x’{‘:’l‘)v

l<m<Mand2<n<N
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o )

Z"l."(q! r) = P(
Omn =4
d<m<Mand 1 <n<N

m.n

Fonlg) = Pl = ¢1XT:0),
l<m<Mand 1l <n <N
Om—ta—1(8) = Pl -1 = s|XTH),
2<m<Mand2<n<N.

The following algorithm specifies the complete
look-ahead decoding including the boundary condi-
tions. This algorithm summarizes how the « posteriori
probabilities shown in Fig. 5 are used in order to
compute Q- 1(8) = Pl - | XTV) for all s%s
and for all (m, n) of the L.

Look-AreaD DECODING ALGORITHM

Step 1. Initialization

Pq .nq(Xl.l)

Fig)=F5——. Vg
1 qul’q' Py(X i)
Step 2: Recursion
Step 2.1. Recursion for the first row:
Forn=23 ... N
n-1 n
m-1 sir
no el

@) Hy p(q, 1,5, 8)

() Fm)n @

H.-S. PARK and S.-W. LEE

Fl.n* l(t)Pqu pq(Xl.n)

Y .n(q- [) = ; ) \v q, t
‘ Sy Fron o) P pAXy)
Fioalg) = Z Yiulg. 1), V.
t
Step 2.2, Recursion for the first column:
Form=23, ... M
F"l - r P r X"l
Z i) = 1alr) 4 [’4( ) i Vq.r

Zq'.r’ F'"— 1. 1()‘/] Pq’ r Pq'(XnL 1)

Fm. ](‘/) = szil(q» l')- v ‘1'

Step 2.3. Recursion for interior sites except for the
first row and the first column:

Form=23 ... Mandn=2,3,....N

Ym* 1.n(rs S) Zm.n - I(L S)

Yr, s, t
Fm 1.n I(S’

G,,,_,,(I‘., s, 1) =

['1,,,.,,((1, ros,t) = G,,,_,,(I‘, 5. ) Pq\r..s.r pq(Xm.n)a V‘Is rs.t

YNI.H(‘I’ tJ = ZHIN.H(([" r’ Si [)' v‘l" r

[

n-1 n

t Xm’" W Xmn )

(b) Gm’n (r, s, t)

(d) Zm,n (g, r)

e

m,n
Xy

(f) Qm-],n.l (s)

Fig. 5. llustration for H, G. Y. Z, F. and Q.



A truly 2-D hidden markov model

Zm,n((fv r) = ZHm,n(q» r’ S’ [)’ Vq’ r

st

Fudd)=YYuaa 0 Vg

Qm* 1.n— I(S) = Z Hm.n(q’ r, 8, {]’ vs

q.r.t

[Classification]

(;)m* 1.n—1 = argmax Qm~ l.n- 1(»“)~
5

Step 3: Extra Recursion

Step 3.1. Recursion for the first site of the last row:

Ora(8) =Y Yagalsir) Vs
[Classification]
Dy, 1 = arg max Qy (s).

Step 3.2. Recursion for the rest of the last row:
Forn=23,....N

Vs
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[Classification]

(?)ALN = arg max QAM.H(S)'
s

Remark 1. Since values of the first column, the first
row, and the last row are not available on a third-
order MMRF, sites at the boundary are processed by
a first-order Markov chain.

Remark 2. A normalization operation is needed in
order to avoid underflow when simulated on a com-
puter.

Figure 6 illustrates the computational process for
F and Q over the lattice L. The reader is referred to ref.
(16) for further details.

4.3. Recognition

Each class of patterns has a single HMMRF model.
Once all the HMMRF models are trained, the re-
cognition is straightforward. Assume that we have
V models denoted by I',, 0= 1,2, ..., V. Given an

Fy2(q)

Fy (@) Fa2(@)
QA

J J

Fi.1(q)

|

Fnm.14q)

Fi nQ)

' J

Fy (@) F2.n(Q)

Qta-1@) Qe tl )

f

[,QM- L) I

l“m-l‘n.|(S) ém. n1(t, 8)
Fm,u(q)
Yooin(r, 8) —9 N
Qurant (@

Fig. 6. Implementation diagram of decoding process.
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observation array X, we first calculate
PX, Q) v=12 ..,V. Here, Q stands for the
optimal state array given by the look-ahead decoding
algorithm. We then select the character whose state-
optimized likelihood is highest, i.e.

¥ = arg ,max PX.Q|T,). (7

5. ESTIMATION OF MODEL PARAMETERS

To use the HMMRF model of Section 3, it is
necessary to determine the values of its statistical
parameters. Model parameter adjustment to fit a set
of observed training data is often referred to as train-
ing. This section discusses training problems that arise
in using our image model, and proposes a novel
solution to this problem.

As mentioned earlier, the use of 2-D MMRF in
image segmentation has become common. However,
it has not been applied to character recognition prob-
lem at all except for Gilloux’s suggestion'?® and the
attempt by the authors of this paper."” The main
reason is that efficient training algorithms do not
exist. A fundamental difference between image seg-
mentation and character recognition lies in parameter
estimation. In the former, the parameter set of a
model is estimated using a realization from the image
model, while in the latter it is estimated using a set of
known training data. Onc may attempt to extend the
efficient training algorithm of HMM to 2-D, but
causality in 2-D model does not guarantee the exist-
ence of exact recurrence relationships.

In this section, we will first review briefly the train-
ing algorithm of HMMSs?! so that we can make our
presentation clearer and the comparisons with the
proposed estimation algorithm easier. We will intro-
duce two approximate solutions: the decision-directed
(DD) method?® and the proposed method.

5.1. The classical hidden Markov model

The training problem of HMMs is to determine
a method to adjust the model parameters (A4, B, n) to
maximize the probability of the observation sequence
given the model. There is no known way to analyti-
cally solve for the model which maximizes the prob-
ability of the observation sequence.'” However, the
Baum Welch algorithm''® iteratively provides para-
meter cstimates that maximize the actual MLE cri-
terion, ie. P(O]4); thosc estimates are based on
partial path probabilities computed by forward and
backward recurrences. Convergence at least to a local
maximum is guaranteed.

5.2. A decision-directed estimation algorithm

Although the problem of unsupervised learning can
be stated as merely the problem of estimating para-
meters of a mixture density, neither the maximum
likelihood nor the Bayesian approach yields analyti-

H.-S. PARK and S-W. LEE

cally simple results.?® Exact solutions for even the
simplest nontrivial examples lead to computational
requirements that grow exponentially with the num-
ber of samples. However, the problem of unsupervised
learning is too important to abandon just because
exact solutions are hard to find, and numerous pro-
cedures for obtaining approximate solutions have
been suggested. An obvious approach to unsupervised
learning is the decision-directed method. It permits
a considerable reduction in computation and storage.

Let the look-ahead decoding algorithm be carried
out on the observation array X71"""! and result
in the estimated most probable state array
Q=M 1. Gy ). Let N{S, x) denote the
number of times the state S is visited in the state array
Q and corresponds to the output x, and let N({5}, ")
denote the number of times the transitions {S} — S’
take place in the decoded state array € where S and §’
are pixel state labels. For example, N(!r, s, t}, ¢) de-
notes the number of times the transition {r,s, t} — ¢
takes place in Q.

When using the DD re-estimation method, the rc-
spective estimators are:

i () N{g.x)
IX) = ——,
Py Y Nig,x)
o N({rl, q) = N({.q)
W?Z“N({r}.qf q“_ZqN(:r}’q)
- N(lr. s, th g
i = o — (8)

S N

If the look-ahead estimated state array Q=
{1y My 2y oo, Oy n) Was the one actully realized
by the source when it generated the data
(X1 X1 oo X o). then formula (8) would give
the actual maximum likelihood estimates of the prob-
abilities p and P underlying the source. The process is
iterated until no substantial change in the estimated
values takes place. The success of the DD re-estima-
tion method thus depends on both the closeness of the
initial guesses 5° and P° to the actual p and P values.

5.3. New estimation algorithm

The formulation of the proposed estimation can be
derived from the extension of the look-ahead tech-
nique which is based on a maximum, marginal «a
posteriori probability criterion for a third-order
HMMRF model. In order to overcome the computa-
tional problems that have precluded the use of a truly
2-D model, we shall need simplifying assumptions.

Each training data is associated with a specific
HMMRF model I' of parameters (A4, B, I1). We as-
sume that the probability of pixel (m, n) being in state
g given all the observations X{'¥ is fairly well esti-
mated given only the look-ahead observations
Xttt Estimates of the model parameters are
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given by
- P(w, 1 = q|X1:1
“ Yo Plog = q'IX%3)

M-1p Wy-1,1 =T
ZmZZ

9)

D Wy =4
Par > w =r )
M-1 Im-1.1 < +1,2
Zmzz q‘P ’ XT.L
Wy =
N-1 2ont+1
P ~ Zn:Z P((’)l.lr*]:[9(1)1.V|:q|x1.1 ) vf
gt~ o N-1 . — 2.0+ 1y
Z,,:z Zq‘P((Ul,n—l—t9")1.n—q ‘Xl.l )
(1
D=y =1 =S Oy =7

PO Z.’L_ZIP<

WDmon—1 =1

Wpon = ‘1
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I Cee n-1 n n+l
1
m-1 s br |u
m t ] q v
i ! m+1,n+1
m+1 z |y |lwx"
Fig. 7. Labeling configuration of X471 +1,
Xl]n*{ 1.n+ I)
Y, s, t (12)

Pq\r.x.r X

M-1goN-1 Wy—ton=1 =8 Wy 1.0 =
anzl Zn:2 ZqP< ‘

Dyn—1 =1 Dyon = {4

zmm[Xﬂ. L=0 P((Um'" = | x’[”j‘"" 1)
Zm.n P((Um.n = ‘ len+l Lnt 1)

i=1,2,....1

PalSi) =

(13)

for all g€ S.

Now an iterative re-estimation procedure to com-
pute equations (9)—(13) can be established. Let us first
consider the re-estimation of 2-D state transition
parameter P,, .. Referring to Fig. 7, the posterior

probability
P ODy—1n—1 =38 Xn]n.+11.71+l
Dpyop—1 =1
requires summing the configurations over the state
variables u, v, z, y and w as
r m+1.n+1
X5

Wp—1.n~1 =3
P(
Wy n—1 = f Wy = (

Op—1.a =T

Um‘n = q

WOm—1,n =

Wy-1n-1 =8 Wy—qg y=7T
([)m." = q
Wmt1n =¥

Om—t1n—1 =3 Wy-y n=7F

o« 3y P

u.r,z.yeS

Omon -1 = f Wy p =4

Wyt =Y

X Z Pn-lu.r.s‘1,:,:‘.q.ypw(Xm+ 1.n+ l)-

weSs

Om+1n-1 =<

By definition of the a third-order MMRF, we can
verify the following corollary easily:

Corollary.

where u, r, s, 1,2, v, ¢, y, we S.
(15)

We can now address the problem of computing the
first factor in the right-hand side of equation (14). Yet
a straightforward calculation is not practical. To ob-
tain an implementable estimation algorithm, the fol-

Pw\u.r.s‘l,:‘r.qn\' = Pwit‘.q._v

5
xt]nwkll.n+l>

Wyt n+1 = U

Opop+1 =0

lowing two assumptions are imposed. Prior to mak-
ing the problem easier with assumptions, consider the
following notations. For m > 1 and n > 1, let us de-
fine QF ., =1{o. 1 <k<ml and QR,={o.;
1 <! < n} and similarly for X and L.

Assumption 1. Given Q7"%, the column €, ,,; and
row QF ., , are conditionally independent.

Assumption 2. QS .+, and QF .| are conditionally
independent provided that only the left column
QF , and upper row QX | are given.

We can derive the following theorem, which is the
extension of derivation of G,, , in Section 4.

Oyp-1 =1

— = m+1l.n+1
Wyvtn—y =2 x1.]

Om+1a+1 =W

O~ n+1 = U

— m+ 1o+ 1y Y
W1 = 0| X1 \{Xm+1,n'rlj

(14)

Theorem 1. Let
L’m-*— 1.n+ l(u'! stz q, y)

Wy —n—1 =39 Wy g = F Oy n+1 = U

=P Dpop—1 = t Oyn =4 Dyyn+1 =70

Wprin-—1=E Omt10 =Y

m41.n+1\ t
Xx].l \[Xrn+14n+l;>~
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Then under Assumptions 1 and 2, Upsq 01w, r,
s, t, 2,0, 4, y) is given by

L{m+ 1.n+ 1(“3 r S, ta Z, U, q’ ‘)

0 if Zm.n(qs ") =0 or Ym.n(qa T) = 0’
Hyoulg, vy 8, ) Hyg g a(vsu, v, @) Hyy v 1y, g0 8, 2)
Lol @ 1) Y (g, 1)

otherwise. (16)

Proof. We decompose L7 \(m + 1,n + 1) into
three parts:
Ly im 4+ L+ 1) = LY UL v Li s 1,

where LS, , ., and LR, , are shown in Fig. 8.
We proceed as follows:

Um+ 1.0+ l(ua ¥, S, f, Z, 0, LI, }")

Wy —1,n-1 =S Wp—gn =1 Wy—gp+y =U

x P Wm,n—1 =1 Dmn =4

Op+1n-1=2 Wyt p=Y

WDp—1,5-1 =35 Oy =7

. . m.n

=P . X1
Wmon—1 =1 Opyn =4

=S

Dm—1.n+1 = U Dy—1,n-1 =S
. C .
XP< s xm.n+1
Wy opy1 = U Wm.n—1 =1
Wp—1,n~1 = 8
Dyp-1 = ¢
R
XP| Opsin-1=2 Ops1,0=Y:Xmt1.n (

From Assumptions 1 and 2, we have

. . Op-1n—1 7S Wp—yn=7F
(M) GlV@n( s X1

Wyn—1 =1 Wpon =4

Op~1n+1 = U .
* C B
< . Xon+r ) and

Wy pe1 =0

((Um+ tn—1 =2, Wyt1.n =), xﬁJr l.n) are Conditionally

independent.

1 n n+l

n+1

m+1 L§1+l,n

Fig. 8. Decomposition of L7412 \(m + 1.5 + 1).

Wp—1,n = F

,
(l)m.n = q
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.. . Om—1.n = r
(i1) Given ( , XTP )

Omn =4

Wy—n+1 = U
N C
» Xm.n*l
Dmop+1 =0

is independent from
Wy — In—1= S
Omop—t = t
Similarly,  given  (Wpn—1 =18 Opn=4g, X7,
- — 1 XR o
(Omat1n-1=2, Oms1.a=DY, Xm+1.n) 15 independent

from (Wp-1.n-1 =5, Wp—.n=71).
Then, it follows that

Unsrnsiu,rs, 82,04, ¥)

Wm—1n-1 =3 Wy n=7T
0<P< . XTI

Wpm,n—1 =1 Wpmon =4

m.n C R
Opn-1 = UUXI.IUXm.n+lUXm+ 1‘n>

Wy n =1

, X’i‘:'f)
ll)m‘" = q
(17

D~ 1,n+1

=Y c
s Xm.n+1
Dy p+1 =0

Wy-1.n+1 = U
xP< s

Opon+1 = U

X P(“)m+l.n*l =Z,Wp-tn =D,
Xﬁ*—l.nl”)m.n*l :ts(’)m,n:qa X’l“’l’) (]8)
We would like to rewrite equation (18) in the form of

the conditional probability given the observations.
Hence, we get

Uni1eilt,r,s,t,2,0,9,))

1

o

n.on — p— .
XI.1>P(“)m.n1 =1 WOp,n =4 | ’1"7

X'1".‘i'>

Wy g =F
P
Dy = (¢

Dyp—gn—1 =3 WOp_1g=17F
x P
Wpyp—1 =1

BOpn = 4
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Op-1,n =1 WOpy—a+1 = U
xP(
Wmon =4

Wy op+1 =0
Won—1 =t

xP(
Wm+ -1 =2

This probability is zero if any one of the factors in the
denominator is equal to zero. By replacing H, Z and
Y, we can get Theorem 1. ]

Wpon = (

XT3 ""). (19)

Wyt =Y

Applying Corollary and Theorem 1 to equation (14)
yields

Dy —1.n=7F
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Proof. See the appendix.
Hence, we get

p Wp—1.1 =7
Om,1 =4
Hy o0, 4,7,4) Zpyi 110, 4)
x ¥
u.r,yeS Fm‘l(_q)

Op—1t.n=1 =S
P(

Wypop-1 = t

Xr]n“vll.n+1>ac Z

Wmon = ( u,r,z,y€s

X Z Pw'r.qy pw(Xm+1.n+l)'

wes
We proceed in a similar way for the estimates (10)
and (11). Consider first the transition probabilities for
the Markov chains governing the distributions of
states along the first column. The result of the deriva-
tion for equation (10) is as follows:

Om-1.1 =71 +1.2
P Xphtil= Yy
W1 = 4

u,r,y.weS
Oy—y.1 =7

Wy—1.2 = U

N
x P O 1 =4 O =0 | XPH12

Wpr11 =) Wptr2 =W

Dy~1,1 =F Wy—1,2 = U
O 2 = 0| XTHE2

« Yy P

u.v.yeS

O =4

Wpt1,1 =Y

f
'le+1.2}

X Z Pwlu.r.r.q.ypw(Xm+ 1.2)- (21)

wes

Using the properties of MMRF and the conditional
properties we have the following theorem.

Theorem 2: Let
¢
Unm+1.2, 1,0, 4, )
Wp—y, 1 =1 Wp-1,2=
= P

_ g +1,2y f
W1 =4 Wy, =1V X'lnl \IXm+l42}

Om+1,1 =Y

Then under Assumptions 1 and 2, US . »(u, r, v, g, y)
is given by

bvf’r;+ 142("" r. v 4, .V)
O. if le(‘!) = Oa

Hm.Z(Ua u,r, Q) Zm+ 1, l(yv q)

(22
Fra(q) )

. otherwise.

X Z Pw|r,q.ypw‘Xm+ LZ)- (23)
wesS
Hm,n(({a r» S, t) Hm.n+ l(v.- u, I', ‘l) Hm+ l.n(,‘"r (1‘ t., Z)
Znds 1) Y monlg, 1)
(20)

Finally, to re-estimate the transition probability dis-
tribution of states along the first row, we should
compute the posterior probability P(w; ,-; =1,
W1, =q | X371, This probability can be developed
as follows:

2.0+
Plor =100 ,=q|XT77)

Dpp—1 =0 Oy n=g Wy psy =V
= Y p(

W p-1=Z Wrp=YV Wpap+1 =W

2,n+1
Xy )

Oin-1 =1 O1n =g Wy 41 =70
o« P
r.z.yeS

WD p-1=2 Wy =Yy

r.z.y. weSsS

2.0+ 13
X1 \n{XZ.n+l}>

x Z Pw|l.z.r.q.y PW(XZ.H+ 1)

wes

249

And the following is the associated theorem for the
first factor on the right-hand side of equation (24).

Theorem 3. Let

US ot z0.4.9)

Wyp-1=1
iP(
Wan-1 =2

2on4 1y f \
Xl.l \'(Xz.n+|| -

Wy =4 Wyp+1 =7V

Wy p =Yy

Then under Assumptions | and 2, U% . (t,z, v, 4, )
is given by

UR itz g, p)

0 if Fi.(g)=0,

o« 25
Yl,n+l(vs 11) HZAn(})*qs t: Z] ( )

Fl.n(q)

The proof is straightforward and omitted.

otherwise.
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Thus, we have
P((Ulm’-l =1, (Ul.n = (1|X%";+1>

yl.n+ ](U, ‘I) IiZ.n(yv q, L,z
Fl.n(c”

rz.y e 8

X Z Pwll'.q.)'pu'(XZ.n+ 1)' (26)

wes
Remark 3. Note that we can easily obtain the esti-
mates of P, and p,{) because P(m,., = q|
x'I'Hi fn 1) = Qm.n(q)'
With these results, we can estimate all model para-
meters A, B, and Il.

6. EXPERIMENTAL RESULTS

Unlike the case of synthetic images, there is con-
siderable uncertainty in handwritten character im-
ages. The purpose of this section is to show how the
HMMRF-based approach can be applied to the prob-
lems of off-line handwritten character recognition.

6.1. Database

Off-line character recognition involves the use of
a fixed number of models, each of which corresponds
to a class of target objects. In order to verify the
performance of the proposed approach using a truly
2-D HMM, the unconstrained handwritten numeral
database of Concordia University of Canada has been
used. It consists of 6000 unconstrained numerals ori-
ginally collected from dead letter envelopes by the
U.S. Postal Services at different locations in the U.S.
Among them, 4000 numerals were used for training
and 2000 numerals were used for testing. The nu-
merals of this database were digitized in bilevel on
a 64 x 224 grid of 0.153 mm square elements, giving
a resolution of approximately 166 PPI.

6.2. The effect of the different number of states and
observation symbols

The recognition rate is affected by the number of
states and the number of observation symbols of
HMMRF model. The determination of optimal num-
ber of states and observation symbols is almost al-

H.-S. PARK and S-W. LEE

ways based on empirical finding. Table 1 shows recog-
nition rates using the different number of states and
observation symbols. Each observation symbol is rep-
resented by the intensity of input grey-level image.
For the test set, the results range from 77.6% for
4 state model to 91.7% for 8 state model when the
number of observation symbols per state is 16. From
this, we see that there is a trend of global improve-
ment as the number of states increases; however, as
the number of states goes from 6 to 8, there is a slight
performance improvement in spite of increasing com-
putational complexity of the estimation algorithm.
Therefore, 6 state model with 16 observation symbols
is found to be adequate in the context of the current
test.

6.3. System comparison

6.3.1. Comparison of the re-estimation algorithms.
In order to examine the validity of the proposed
re-estimation algorithm developed in Section 5, we
have compared it with DD re-estimation algorithm.
In this test, HMMRF models were designed with six
states. Figure 9 shows the average log likelihood
probability for typical training runs using the DD
re-estimation algorithm and the proposed re-estima-
tion algorithm, respectively. Training was continued
until the increase of the average log likelihood prob-
ability between iterations becomes less than 2 x 103
or convergence is achieved.

Learning curves for two re-estimation algorithms.
The proposed re-estimation algorithm required only
an average of 10 iterations for the convergence while
the DD algorithm converged after about 40 iterations.
Note that, however, we cannot guarantee convergence
for both algorithms in principle although we have
achieved convergence for 400 training data per digit in
practice.

The recognition results using the two re-estimation
algorithms are given in Table 2. As expected, the
recognition result of the proposed re-estimation algo-
rithm is better than that of the DD re-estimation
algorithm.

6.3.2. Comparison of filtering technique with fixed-
lag smoothing technigue. To evaluate the validity of
the fixed-lag smoothing based on the look-ahead

Table 1. Performance comparison using different number of states and observation symbols

Number of
observation symbols

Number of states

Recognition rates

Training set (%) Testing set (%)

4 8
16
6 8
16
8 8
16

774 74.3
81.1 77.6
90.5 88.0
93.5 90.8
922 88.4
94.7 91.7
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Fig. 9. Learning curves for two re-estimation algorithms.

Table 2. Comparison of the recognition results using different re-estimation algo-
rithms

Re-estimation algorithm

Recognition rates

Training set (%)

Testing set (%)

DD algorithm
Proposed algorithm

782
93.5

74.9
90.8

Table 3. Recognition results of the filtering versus the fixed-lag smoothin techniques

Decoding technique

Recognition rates

Training set (%)

Testing set (%)

Filtering
Fixed-lag smoothing

§2.2 78.0
93.5 90.8

technique, we investigate the performance compari-
son with the filtering. In our experiments, the filtering
was performed by labeling pixels using F, (g) =
P(w, /XT7). Table 3 shows the recognition results
obtained using the filtering and the fixed-lag smooth-
ing techniques. It can be observed from Table 3 that in
the presence of correlation between successive states,
look-ahead observations convey significant informa-
tion about w,, ,. From these results, it is apparent that
the fixed-lag smoothing technique significantly out-
performs the filtering.

6.3.3. Comparison with HMM-based approaches. 1t
is natural that the 2-D technique is compared with its
1-D counterpart on the basis of its performance, mea-

sured by recognition rates and simplicity. Two
HMM-based approaches have been considered:

e [-D HMM?29®
e Pseudo 2-D HMM.®

Table 4 shows the performance of the HMMRF-
based approach with those of the HMM-based ap-
proaches. The results reveal that the modeling of the
2-D nature is generally an important factor in recog-
nition rates. We see that 1-D HMM without modeling
2-D nature gives the worst performance. After com-
pensating for 2-D nature, the performance improved
considerably as shown in the results of pseudo 2-D
HMM and HMMRF model. HMMRF model gave
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Table 4. Recognition results of three different models

Model type Number of states Recognition rates

Training set (%) Testing set (%)
1-D HMM 8 87.2 82.0
Pseudo 2-D HMM 10 88.4 85.2
HMMRF 6 93.5 90.8

the best recognition result because the spatial correla-
tion has been fully exploited.

Clearly, from the viewpoint of recognizer perfor-
mance, the proposed HMMRF-based approach is
more powerful than HMM-based approaches. At the
computational complexity, however, HMMRF-based
approach is not so efficient as thc HMM-based
approaches because the decoding procedure in
HMMRF model has much higher complexity than
the corresponding parts in HMM. In a third-order
HMMRF model the decoding algorithm requires the
total complexity of O(%*) operations per pixel where
4 is the number of states.

In summary, a remark is possible that the proposed
HMMRF-based approach is promising for the recog-
nition of handwritten characters with large variations
and distortions. It is duc to its ability to cope with the
variation in handwritten characters by means of stat-
istical modeling.

7. CONCLUSIONS

In this paper, we have presented a new framework
for the recognition of handwritten characters using
a truly 2-D model: hidden Markov mesh random field
(HMMRF). The HMMRF model which is a statistical
model for 2-D image modeling and recognition is an
extension of a 1-D HMM to 2-D and it can provide
a better description of the 2-D nature of characters.
The character recognition based on HMMRF model
consists of the training phase and the decoding phase.
Our optimization criterion for training and decoding
is based on the maximum, marginal a posteriori prob-

LSy (w0, 4, p)

Wy—1.1 =F )
OCP( N X’ln"ll P
Wyt = 4
R (
XPl omirr =y, X540

(

m-1.2 = U Dm—y1 =T
D € . X
Wp,2 =0 W1 =(q
Op-1,0 =7
' m. 1
> X1
W1 =
(/),"71_2 =Uu X(.
. m 2
Dz =0

ability. We have also developed a new formulation of
parameter estimation for off-line character recogni-
tion. Computational concerns in 2-D, however, neces-
sitate certain simplifying assumptions on the model
and approximations on the implementation of the
estimation algorithm. In this paper, the image is
modeled as a third-order MMRF which is character-
ized by causal conditional distributions, and the
proposed estimation algorithm is applied over the
look-ahead observations rather than over the entire
image. Thus, the formulation has been derived from
the extension of the look-ahead technique devised for
a real-time decoding.

The experimental results revealed that the pro-
posed approach is capable of providing desirable per-
formance on the task of recognizing handwritten
characters under reasonable modeling assumptions.
Although the proposed estimation algorithm has yiel-
ded good recognition results for handwritten charac-
ters, it is desirable to reduce the computational
complexity of the algorithm for practical application.
Also we expect further improvements of the proposed
approach by generating discriminant symbols using
more robust and efficient feature preserving the spa-
tial continuity of image.

APPENDIX A

A.l. Proof of Theorem 2

As stated earlier in re-estimation procedure of
P,v.s.0 it is possible to decompose L7 2\(m + 1, 2)
as

m. 1
1.1

L o\m+ 1,2) =Ly UL ,ULR, .

Then, LS 1y 5(u, 1, ¢, g, ¥) is developed as follows:
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Wy—11 =7F Wp—1.2 = U .
=P D Sl X2
Dy 1 :q Wy 2 =0

B R _ m. 1
XP(Wmr1.1 = ¥ X1 110w 1 = 4, 1.1>
Op—1.0 =1 Wy—1.2 = u 2 Dy 1 = q
P XTi P
Dy, 1 = Wy 2 =0 Opi1,1 =Y

My =4
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XT:;)

(A1)

P((“m. 1 =4 | x’l" ]1)

By using definition of H,Z and F, we can get
Theorem 2.
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