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A New Recurrent Neural-Network Architecture
for Visual Pattern Recognition

Seong-Whan LeeSenior Member, IEEEand Hee-Heon Sondyember, IEEE

Abstract—In this paper, we propose a new type of recurrent tion, such as handwritten character recognition, have been in
neural-network architecture, in which each output unit is con- progress vigorously, and some of them have shown promising
nected to itself and is also fully connected to other output units results [8]-[10]. However, these approaches are mostly based

and all hidden units. The proposed recurrent neural network , | , | K qinall
differs from Jordan’s and Elman’s recurrent neural networks " Jordan’s and Elman’s recurrent neural networks, originally

with respect to function and architecture, because it has been Proposed for dynamic pattern recognition. Therefore, they may

originally extended from being a mere multilayer feedforward be inefficient in visual pattern recognition.

neural network, to improve discrimination and generalization In this paper, we propose a new type of recurrent neural-

powers. We also prove the convergence properties of learning newwork architecture which is adequate for visual pattern

algorithm in the proposed recurrent neural network, and ana- o . o
recognition, such as handwritten character recognition. The

lyze the performance of the proposed recurrent neural network - \
by performing recognition experiments with the totally uncon- Proposed recurrent neural network differs from Jordan’s and

strained handwritten numeric database of Concordia University, Elman’s recurrent networks with respect to their functions
Montreal, Canada. Experimental results have confirmed that the and architectures, because it has been originally extended
proposed recurrent neural network improves discrimination and  ,om the multilayer feedforward neural-network architecture,
generalization powers in the recognition of visual patterns. . NSO o
to improve discrimination and generalization powers. The
Index Terms—Convergence properties, recurrent neural net- proposed recurrent neural network consists of three-layers, in

work, visual pattern recognition. which each output unit is connected to itself, and is also fully
connected with other output units and all hidden units.
I. INTRODUCTION We also prove the convergence properties of learning algo-

ECENTLY, a number of neural-network models havmhm in the proposed recurrent neural network, and analyze
: s e performance of the proposed recurrent neural network by
been implemented for pattern recognition [1], [2]. In

particular, multilayer feedforward neural networks have ShOV\Performlng recognition experiments with the totally uncon-

n_. . ) 4 .
. . T I ; sfrained handwritten numeric database of Concordia Univer-
their effectiveness in visual pattern recognition in a variety of . )
) Sity, Montreal, Canada. Experimental results confirm that the
styles and sizes [3]-[5]. However, these approaches can oh . S
. ) . ; posed recurrent neural network improves discrimination
provide partial solutions to real-world data handling, because L o .
X - ) - . nd generalization powers in visual pattern recognition.
they have shown insufficient learning capability with respec . ! . .
. . .. The rest of this paper is organized as follows. Section I
to similar pattems. In order to overcome this problem, it | riefly reviews previous recurrent neural-network architec
needed that output results of feedforward neural networks y P

e :
analyzed and reused in training phases. ures. A new type of recurrent neural network is proposed and
In general, in the case of visual pattern recognition wit]

il'%s convergence properties proven in Section Ill. Experimental
multilayer feedforward neural networks, the hidden units a{gsults are presented, verifying _the eff_ectweness of the pro-

.- . . . osed recurrent neural network, in Section 1V, and concluding
learned to maximize useful information from input pattern

and the output units are learned to discriminate informatiorﬁmarks are given in Section V.

given from hidden units [6], [7]. Therefore, it seems reasonable
to provide more information to the output units in order to
improve discrimination powers in visual pattern recognition.
Recurrent neural networks offer a framework suitable for An early use of a recurrent network can be found in the work
reusing network output values in training. Recently, researchéfsAndersonet al. [11], [12]. These used a fully connected

applying recurrent neural networks to visual pattern recogrieural network called brain state in a box (BSB) to model
psychological effects observed in probability learning. In this
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Fig. 1. Jordan’s recurrent neural network.
Fig. 3. Pollack’'s sequential cascaded neural network.
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Fig. 2. Elman’s recurrent neural network.
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[14]. The new model uses a sigmoid transfer function as

the activation function for the processing units, and units aggy. 4. Proposed recurrent neural-network architecture.
updated continuously, using differential equations.

Jordan deyelpped a network model capable of displayifg another is merely scaled by connection strengthyo;).
temporal variations and temporal context dependence [13§yever, the high-order recurrent neural network proposed by
(Fig. 1). Jordan’s network played a useful role in motogmelhartet al. [19], combines multiple incoming activations
control systems. This type of network model differs from thg,, . ., ). One benefit of switching to a higher-order network
traditional view of motor control, in that it emphasizes thak that more functions can be loaded into networks with fewer
processors do not store and retrieve output vector sequeneigyrces. Just as first-order connections underlie Jordan’s
in linked lists or in any other abstract data structure. Rathgf,q Elman’s recurrent neural networks, multiple connections
trajectories are computed during run-time as the result ofi&m the foundations of several recurrent networks, such as
dynamic process. Those units calculating trajectories can pgjiack’s sequential cascaded neural network [20] (Fig. 3) and
classified into four types: plan units, state units, hidden unitg,, higher-order recurrent neural network of Gitgsal. [21].
and output units. The state units possess inputs connected 0y, further information on previous recurrent neural-
themselves, and other units within the state layer deploy thgwyork architectures, refer to the works of Kolen [12].
standard connections to the output units. Elman developed a
simple recurrent neural network [16] (Fig. 2). In this approach, ll. PROPOSEDRECURRENT NEURAL NETWORK
rather than the outputs of the network being fed into the input . .
units, the activation results of the hidden units are fed into I this section, we propose a new type of recurrent neural-
the input units. While Jordan’s recurrent neural network h&§tWork architecture, and prove its convergence properties.
appeared in a variety of control applications, Elman’s recurrent )
neural network has been often applied to the problem ¢ Architecture of Proposed Recurrent Neural Network
symbolic sequence prediction. The proposed recurrent neural-network architecture consists

Learning methods for Jordan’s and Elman’s recurrent neof three-layers, as shown in Fig. 4. The proposed recurrent
ral networks are extensions of the backpropagation learningural network differs from Jordan’s and Elman’s recurrent
method. A very general learning algorithm is that of William&eural networks with respect to their function and architecture,
and Zipser [17]. Kuaret al. provided a rigorous convergencebecause it has been originally extended from the multilayer
analysis from an extension of backpropagation for recurrefieedforward neural network to improve discrimination and
neural networks containing Jordan’s and Elman’s recurreg¢neralization powers in visual pattern recognition.
neural networks, as special cases [18]. The architectures spedzach hidden unit is fully connected to all input units, and
ified by Jordan and Elman employ first-order connectioreach output unit is connected to itself, and also fully connected
between units. That is, the activation flowing from one untb other output units and all hidden units. Therefore, the output
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value of theith output unit at cycle is obtained as follows: cycle. That is, the activation values of each output unit

» in (2) is used in the next cycle, in order to provide more

ol (t) = f(Z wijo]’?(t) +7:(8)) (1) dlscnmma_uve mformatlo_n. As a r_esu_lt, _the weights in the
im1 output units can be trained to discriminate between these

ambiguous activation values of the previous cycle and the

q discrimination powers can be improved.
ri(t) =Y zaop(t — 1) )

k=1 B. Convergence Properties of Learning Algorithm

Whereojb(t) is the output value of thgth hidden unit at cycle in Proposed Recurrent Neural Network

t, w;; is the weight between thgth hidden unit and théth We now prove the convergence properties of the
output unit,z;; is the weight between thith output unit and Williams—Zipser learning algorithm [17] in the proposed
the ith output unit,r;(¢) is the recurrent value from the outputrecurrent neural network. Our results follow from the results
units at cyclet—1, p is the number of hidden units, agds the of Kuan and White [22] and Kuaet al. [18]. Kuan et al.
number of output units. The activation functigns sigmoidal. provided rigorous convergence analysis of an extension of
The output value of théh hidden unit at cyclé is obtained backpropagation for recurrent neural networks containing

as follows: Jordan’s and Elman’s recurrent neural networks, as special
n cases.
ol (t) = f(z wiji;(t)) (3) We considered the same conditions and convergence results
j=1 as those of the theorem in the work of Kuetral.[18], because

the stochastic process with respect to input sequences, the

Where_ij(t) s the output value ,Of thth input unit at_cycle measurements of network error, the learning recursions, and
t, wi; s the weight between thgth input unit andith hidden the limit conditions of the weight changes of the proposed

unit, and n 1S the number of m_put units. The input unltsrecurrent neural network are equivalent to those of Jordan’s
feature the linear transfer function. The proposed recurr

N “Hd Elman’s networks, in spite of the difference in architecture.
neural network operates as follows. The activation values? us, we describe only those assumptions of the theorem
the output units are initially set to zero. The input featu !

"Which are based on modified output functions and recurrent

values are fed into the input units, which feature the ”ne%riables for the proposed recurrent neural network
transfer function; and the output values of the input units are\na now introduce some mathematical notatioﬁs and a

forward propagated gntll the output units become active. .stochastic process [18], which are necessary for these assump-
The weight correction of the feedforward neural network Nons.

the training phase is as follows: Suppose that we observe realization of a sequétzé =

P {Z, :t=0,1,---} of random vectors, wherg, = (Y, X})*

Awij =€ (bt — O(i))fi/(z w0l (1)) - of (4)  (with 7 denoting the transposition operator). We intergdrgt

3=l as a target value at cyckeand X; as a vector of those input
wheree is the positive learning rate argis the target value of variables influencing;. X; may contain the lagged values
output uniti. As shown in this equation, the weight correctio®f ¥z (€.9.,Y;—-1,Y;_»2), as well as the lagged values of other
is only based on the specific training pattern in a single cychéariables.
Because the output units in a feedforward neural networklLet X* = (Xo,---,X;) denote the history of the process
are only activated by units in previous layers, the activatioh from cycle zero through cycle and f;(X", #) denote the
values of the previous cycle have an effect on the activati@@Proximation function a8 ranges over the parameter space
values of output units in the current cycle. In particular, i C R*, wheres is the number of weights in the network.
the case of training similar visual patterns, the output units in On the basis of the stochastic process used to prove the
the previous cycle produce more ambiguous activation valuégnvergence properties of the Williams—Zipser learning algo-
In this respect, it is required to minimize propagation dfithm [17], [18], we begin by picking arbitrary initial weights
ambiguous activation values in the next cycle. On the basistbf recurrent variablegt;, and gradient matrixo. To update
this property, the weight correction of the proposed recurrefgtwork weights, we compute network error and gradient as

neural network in the training phase is as follows: follows:
p éo = U,(Zo, Ro, éo) (6)
Aw;j = e (ti — o) f 10} (¢ R 5 4 A b
Wi 4 € ( Oz)f (Jzz:lw JOJ( ) VGO _ U,Q(Z(),Ro,eo)T + Aour(Z(),Ro,eo)T. (7)
g Then, the weights in cycle 1 are calculated as follows:
+Zzik02(t— 1)) - of. 5) o
k=1 91 = 90 — 7’]0Véo * €. (8)

_ : a _ C _ _ _ .
In this equation, the temEk_:l_szoz_(t ) 1_)' V‘_’h'Ch is the The recurrent variables and gradient matrix are updated in
information needed to maximize discrimination powers, 'égcle 1 to

added to (4). Training for the same training pattern is carrie X .
out based on these ambiguous activation values in the next Ry = p(Zo, Ro, bp) 9
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and Assumption A.1:(Q, F, P) is a complete probability space,
which is defined by the sequence Btmeasurable functions
Ay = po(Zo, Ro, 00)T + Dopr(Zo, Ro,00)F.  (10) {Z : @ — Rv*Lt = 0,1,2,--} with sup,5|Z| <
€7l < oo, wherev € N is the size of input vector{Z,}
Now, network error and gradient are calculated as follows: is NED on {V;} of size 5, where {V;, ¢t = 0,4+1,+2,.--}
is a mixing process o2, 7, P) with ¢,, of size —3, or
= u(Zy, Ry, 6;) (11) @m of size —1. For eacht = 0,1,---, Z; is measurable
Ver = wa(Za, B, 00T + Avun (20, B, 60y, (12) T o= oCon Vi Vi) . _
L= Hoal, L T LU &Ly LT The following condition restricts the network error function.

) , ) Assumption A.2:Network output is given by
Then, the weights in cycle 2 are obtained as follows:

q
by =0, —n Ve, - &y (13) o=F <a +) (BGETY) + 7’T6i)> (18)
=1
At cyclet, we have targets and inputs, recurrent variables
Ry, weights é,, and gradient matrixA,, permitting us to
compute

and network error is given by

q
w(z,r,0) =y — F<a + Z(ﬁiG(xT%) + 7‘T6i)> . (19

ét = U,(Zt, RE’ ét), im1

yét = Tfe(Zthtvet)T + Atur(Zthvét)T (14)
Ory1 = b—mVéy-éy, Then, network recurrence is obtained as follows:
Rt+1 = p(Zthtvet)
q
and plz,m,0) = F <a +3 (BGETv) + rTm) . (20
=1
A _ D ANT A > RYA
Apy1 = po(Ze, Be, 01)" + Dipr(Ze, By, 00) . (15) The mean value theorem for such functions ensures
A' potgntlal difficulty is that.not_hmg preventy — co. To \p(2,71,8) = p(z,7,0)]
avoid this, we employ a projection operater: R* — O,
WheAreQ is a compact §qbset '(RS. The projected process < sup Lo (2,7, 0] | 71 = 7). (21)
{n(6;)} is bounded, and; is defined a®); = #(#;) whenever 2€K. reK, ,0€0

0, € ©.{6,} also denotes the projected process, for notational
convenience. The following condition restricts network recurrence.

In order to describe our assumptions of the theorem, weAssumption A.3:Network recurrence is determined by (20).
introduce the notion of near epoch dependent (NED) on &et cy = supyci,.|F'(b)]. Then,® is such thafy"?_, |6;| <

underlying mixing process [18]. c}l(l — ¢) for somee > 0.
Let {V;} be a stochastic process in a probability space Because the Jacobian matrix @fwith respect to recurrent
(Q, F, P), and define the mixing coefficients variables is calculated as follows:
= sU su P(G|F) - P(G)| (16 {
¢ tp{FeP Gef?j;m P(F)>0}| (G1E) (@] (18) pr(z,7,6) = F/(OC‘FZ@G(UUT%)
U = SUP sup |P(GN F) - P(G)P(F)| (17) .
t {Fert _ Geffjm} + Z 7’T(Si) i Z 8 (22)
3 =1
where . = o(V,,---.,V;), and theo-field is generated by
Ft: Ve, .-, V. Wheng,, — 0 or a,, — 0 @asm — oo, {V;} network recurrence restriction is given by
is termed¢-mixing or a-mixing [18]. When ¢,,, = O(m?)
for some\ < —a, {V;} is termed¢-mixing of size —a, and 4
similarly for c,. lon (2,7, 0)] < |F'(a+ > BiG(z" )
Let [|Z]|2 = (E|Z:[)"/* and B 170(Ze) = E(Z| Fi2), =t
and let Ly(P) denote that class of random variables having ! T !
+> e 16l

[|Zi|l]2 < oo. The dependence ofZ,} on an underlying
process{V;} is expressed as follows [18]. 4
Definition 1: Let {Z;} be a sequence of random variables <cp Z |64 (23)
belonging to L»(P), and let{V;} be a stochastic process
n (Q,F,P). Then {Z,} is NED on {V;} of size —q if
Vm = sup, ||Z; — EITTN(Z,)||2 is of size—a. Now, the learning recursions are formally described as

t—m

The data generating process is described as follows.  follows.
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infgcor ét—9| — 0 ast — oo. Furthermore, for a continuous

é /2 3 ?‘ 5 éy 7 ¥ 7 vector fielduv(-) on ©, define the vector field[uv(-)] as
6 \Na223 ¥ 3 69 & % Ao(6)] = Imfr(6 + 60(0)) ~ 61/5, 9O  (32)

o 12 '9" $/ NN 7 e when the limit is unique. Whe is in ©, but not on its
a ] & 3 4 5 é 7 % Q tfoundaries, sufficiently smafl + év(6) is in © for 6, so that

Tv(@)] = v(9).
The desired convergence of the proposed recurrent neural
9 7 oL T ¥ s é 7 / 4 network now follows immediately.
Fig. 5. Representative samples from totally unconstrained handwritten nu-Theorem 1: Suppose that Assumptions A.1-A.5 hold.
meric database. Then,
1) There exists a P-null sef, such that forw ¢
Qo, {#:(-)} is bounded and equicontinuous at bounded

Assumption A.4:1) Let KA be a compact subset $°*?, intervals, and{#;(-)} has a convergent subsequence,
where p is the size of recurrent variable, and &, € whose limit §,(-) satisfies the limit expectatiof =
K,,A, € Kx, andf, be chosen arbitrarily and independently — #[2(6)].
of {Z:}. Fort =0,1,2,---, define Let ©* be a set of locally asymptotically stable (in

A the sense of Liapunov) equilibria i® for this limit
& =u(Zy, Ry, 04), (24) expectation with a domain of attractiafj©*) C R*.
Vér = ug(Zy, Ry, 0)7 + Aun(Zy, R,0,)T  (25)  2) If © C d(©*), thend, — ©* ast — oo, with probability
b, — [h 55 one.
?t+1 ife AmVAetet] (26) 3) If © is not contained ind(©*), but for eachw ¢
Bty = p(Z1 B, 01) 27) Q0,0 (w) enters a compact subset df©*) infinitely
and often, thend, — ©* ast — oo, with probability one.
. ) . o 4) Given the conditions in (c), if©* contains only a
Avir = po(Ze, Re, 00)" + Dypr(Zy, Ry, 0)T (28) finite number of points, then there exists a measurable

mapping#* : Q@ x © x K, x K — ©*, such that
0 — 6*(-, 00, Ry, Ng) — 0 ast — oo, with probability
one

wherer : R® — © is a projection operator restrictin{g@t}
to the compact se®.

2) {n:} is a sequence of positive real numbers, such that ' . .
05 o0 Proof: The proof follows immediately from the proof of
2 im0 n¢ < oo and Dm0l = 0O P Y b

One more condition is required to state Kuan and Whitetge Theorem in the work of Kuan and White [22], itself derived

convergence results [22]; it guarantees the existence of {ﬁoem fundamental results of Kushner and Clark [23]
limit of E(Ve,(8) - ¢,(6)). We define the functiork as

R, 0) = —[ug(z,7,0)T + Aup(z,7,0) Ju(z,7,60) (29) IV. EXPERIMENTAL RESULTS

In this section, we present experimental results and analyze
B A s ; v the performance of the proposed recurrent neural network.
A(0) = (AZ(6)7, AL(0)7, A\ (6)7)7, where \(0) = Zi, | order to verify the performance of the proposed recurrent
AT(0) = 1,(Z171,8), and A2 (0) = vecVI (2171, 6). » : :

t t 19 t t ’ neural network, recognition experiments using the totally

Our final condition is given as follows. _ unconstrained handwritten numeric database of Concordia
Assumption A.5:For each® € ©,h(8) = limy_ F University were performed [2].

(h(X\(9),8)) exists.
Kushner and Clark’s results [23] establish certain properties
of piecewise linear interpolations df;} with interpolation A Database
intervals {#n;}. Definer, = 22;3 7,t > 1, 9 = 0. The The handwritten numeric database of Concordia University

where A = (27,77 vecTA)T. We also defineX.(6) as

interpolated process is defined as consists of a totally unconstrained 6000 numerals originally
- . R collected from dead letter envelopes by the U.S. Postal Service
Oo(7) =, (Te1 _T)Qf from different locations in the United States. The numerals
+ 07 M = 1)0ig1, 7T € [11, Tea1] (30) of this database were digitized in bilevel on a 64 224
. . . grid of 0.153 mm square elements, giving a resolution of
and its leftward shifts are defined as approximately 166 PPI [24]. Training used 4000 numerals and
. go(ﬁ +7) 7> -7, testing used 2000.
0i(1) = {éT T< =1, t=0,1,2,---. (31) Fig. 5 shows some representative samples taken from the

B numeric database used in this paper. Many different writing
We thus have a sequengé,(-)} of continuous function on styles are apparent, as well as different numeral sizes and
(—00, 00). In stating this result, we writ¢, — ©* ast — oo if  stroke widths.
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Fig. 6. Learning curves for the four different neural networks.
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Fig. 7. Error rate versus training set size for the four different neural networks.

TABLE |
ERROR RATES ON THE TRAINING SET

H Method [Feedforward NN [ Jordan’s RNN { Elman’s RNN 1 Proposed RNN H
[Error rate [ 0.850% | 0650% | 0625% | 0575% |

TABLE I
ERROR RATES ON THE TESTING SET

“ Method ] Feedforward NN I Jordan’s RNN I Elman’s RNN l Proposed RNN “
[ Error rate | 3.7% | 3.1% [ 29% ] 2.7% |

B. Recognition Experiments image, directional feature vectors for horizontal, vertical, right-

diagonal, and left-diagonal directions are calculated from a

In order to demonstrate the performance of the proposed &e_normalized image by using Kirsch masks [25]. Addition-

current neural network, four kinds of neural-network classifielémy each 16x 16 directional feature vector is compressed to

have been considered. These are as follows: 4 x 4 features. Furthermore, in order to consider the global
Feedforward NN: Simple three-layer feedforward neurgharacteristics of input image, we compressed thex166

network; normalized input image into a 4 4 image, and used this
Jordan’s RNN: Jordan’s recurrent neural network; compressed image as a global feature. As a result, final features
Elman’s RNN: Elman’s recurrent neural network; consist of 5x 4 x 4 features; 4x 4 x 4 local features, and

Proposed RNN: Proposed recurrent neural network. 1 x 4 x 4 global features. These features have been used as
The input pattern has been size-normalized to<186, and input values to neural networks, in which the input layer and
then, in order to train the spatial dependencies in a charadtden layer consist of 80 units and the output layer consists
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TABLE I
REDUCTIONS IN ERROR RATE FOR EACH RECURRENT NEURAL NETWORK COMPARED TO THE SIMPLE FEEDFORWARD NEURAL NETWORK
Method | Jordan’s RNN | Elman’s RNN | Proposed RNN ”
HReduction in error rate I 18.0% | 20.0% I 24.1% ”
8 T T T T
%.. Feedforward NN -e--
. Jordan’s RNN -+--
. Elman’s RNN ~E---
7L ~ Proposed RNN -»— |
“
o
o
6 o » |
* T
e,

Error rates
i
/
i

Rejection rates (%)

Fig. 8. Error rate versus rejection rate for the four different neural networks.

TABLE IV
CONFUSION MATRIX FOR THE FEEDFORWARD NN

Class [ 0 | 1 | 2 I 31 4]5 | 6 |7 [ 8 | 9 [ Substituted | Recognized ]
0 192 1 2 5 4.0% 96.0%
1 195 | 2 1 2 2.5% 97.5%
2 1911 5 1 3 4.5% 95.5%
3 192 4 1 4.0% 96.0%
4 2 1 193 3 1 3.5% 96.5%
5 1 1 4 193 1 1 3.5% 96.5%
6 1 1 1 195 2.5% 97.5%
7 2 1 1921 1 1 4.0% 96.0%
8 1 5 3 191 4.5% 95.5%
9 1 1 1 3 2 1192 4.0% 96.0%

Average 3.7% 96.3%

of 10 units. In order to activate the output units of the recurremarried from 800 to 4000, fixing the number of testing set at

neural networks the feature values for a character are acce@860. Fig. 7 shows the changes in error rate without rejection

twice. This has the effect of preserving spatial dependenci®s testing sets as the size of training set increases.

for effective discrimination of similar numerals. As can be observed from Fig. 7, the proposed recurrent
We have used the backpropagation learning algorithneural network and Elman’s recurrent neural network showed

[19] for simple feedforward neural network and thesuperior generalization powers to the other neural networks.

Williams—Zipser algorithm [17] for recurrent neural networks. Tables | and Il show error rate without rejection on the

Because training sequence size is two, nameéjyand ¢;, training sets and testing sets, respectively.

per character in training the recurrent neural network, theAs indicated in Table I, in the case of simple feedforward

modification of weights occurs only in cycle. neural network, the error rate is 3.7%. In the cases of using
. . the other three types of recurrent neural network, error rates
C. Experimental Results and Analysis are 3.1%, 2.9%, and 2.7%, respectively. These results confirm

Fig. 6 shows learning curves for the four different neurdhat the proposed recurrent neural network has very good
networks. As shown in Fig. 6, the proposed recurrent neuffcrimination powers when compared to the other recurrent

network greatly improved convergence speed. neural networks. _
We also have examined error rate versus training set sizeTable lll shows the reduction of error rate for each recurrent

in order to verify the generalization powers of the proposettural network compared to the simple feedforward neural
recurrent neural network. The number of training sets has baertwork in Table II.
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TABLE V
CONFUSION MATRIX FOR JORDAN'S RNN

[Class [ 0 [ 1 [ 2 [ 3[4 [5]6 [ 7] 89 [Substituted [ Recognized |

0 193 1 2 4 3.5% 96.5%
1 196 | 2 1 1 2.0% 98.0%
2 193 | 4 1 2 3.5% 96.5%
3 193 4 1 3.5% 96.5%
4 2 1 194 2 1 3.0% 97.0%
5 1 1 3 194 | 1 3.0% 97.0%
6 1 1 1 1 196 2.0% 98.0%
7 2 1 2 1931 1 1 3.5% 96.5%
8 1 4 3 193 3.5% 96.5%
9 1 1 1 3 1| 193 3.5% 96.5%

Average 3.1% 96.9%

TABLE VI

CONFUSION MATRIX FOR ELMAN'S RNN

IClassl 0 I 1 | 2 | 3 | 4 I 5 I 6 l 7 I 8 } 9 |SubstitutedIRecognized’

0 194 1 2 3 3.0% 97.0%
1 196 | 2 1 1 2.0% 98.0%
2 194 ] 3 1 2 3.0% 97.0%
3 2 1194 3 1 3.0% 97.0%
4 1 194 2 1 3.0% 97.0%
5 1 1 3 194 | 1 3.0% 97.0%
6 1 1 1 196 2.0% 98.0%
7 2 1 2 193 1 1 3.5% 96.5%
8 1 3 3 194 3.0% 97.0%
9 1 1 3 1 193 3.5% 96.5%

Average 2.9% 97.1%

TABLE VII

CONFUSION MATRIX FOR THE PROPOSED RNN

[Class [ 0 [ 1 [ 2 ]3[4 5] 6 ][ 78] 9 [Substituted | Recognized |

0 195 1 2 2 2.5% 97.5%
1 196 | 2 1 1 2.0% 98.0%
2 195 | 2 1 2 2.5% 97.5%
3 2 | 194 3 1 3.0% 97.0%
4 2 1 194 2 1 3.0% 97.0%
5 1 1 2 195 | 1 2.5% 97.5%
6 1 1 1 1 196 2.0% 98.0%
7 2 2 194 1 1 3.0% 97.0%
8 1 3 3 194 3.0% 97.0%
9 1 1 1 3 1 193 3.5% 96.5%

Average 2.7% 97.3%

As shown in Table Ill, the use of the proposed recurree@sily see the discrimination performance of each architecture.
neural network brings about 24.1% reduction in error ratss shown in Table VII, the proposed recurrent neural network
compared to the simple feedforward neural network. Howevean classify similar numerals efficiently.
for the cases of using Jordan’s and Elman’s recurrent neural
networks, the reductions in error rate are 20.0% and 18.0%,
respectively. The 24.1% reduction in error rate is of statistical V. CONCLUDING REMARKS

significance in unconstrained handwritten numeric recognition. .
g 9 In this paper, we proposed a new type of recurrent neural

- GO arie ’ rﬁ?twork architecture, in which each output unit is connected
evaluate discrimination performance of the four different neys itself and is also fully connected to other output units and
ral networks on testing sets. The results are described in Figaff-hidden units. The proposed recurrent neural network differs

Table IV through Table VII show confusion matrices withfrom Jordan’s and Elman’s recurrent networks with respect to
out rejection for each neural network. In these tables, we camction and architecture, because it was originally extended
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from the multilayer feedforward neural network to improveis]
discrimination and generalization powers.

In general, in cases of visual pattern recognition usir%ﬂ
multilayer feedforward neural networks, the hidden units are
learned to maximize the useful information from input patterr{$8]
and the output units are learned to discriminate the information
given from the hidden layers. Therefore, providing morgoj
information to output units in order to improve discrimination
powers seems a natural step. [20]

In this paper, we also proved the convergence proper-
ties of learning algorithm in the proposed recurrent neurgi]
network and analyzed the performance of the proposed ar-
chitecture by performing recognition experiments with thgy
totally unconstrained handwritten numeric database of Con-
cordia University. Experimental results confirmed that th 3
proposed recurrent neural network improves discrimination
and generalization powers in visual pattern recognition.

Further investigation should be made, however, to desidifl
an optimal recurrent neural-network architecture which offers
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