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Motor Impairment in Stroke Patients Is
Associated With Network Properties During

Consecutive Motor Imagery
Minji Lee , Yun-Hee Kim , and Seong-Whan Lee , Fellow, IEEE

Abstract—Objective: Our study aimed to predict the
Fugl-Meyer assessment (FMA) upper limb using network
properties during motor imagery using electroencephalog-
raphy (EEG) signals. Methods: The subjects performed a
finger tapping imagery task according to consecutive cues.
We measured the weighted phase lag index (wPLI) as func-
tional connectivity and directed transfer function (DTF) as
causal connectivity in healthy controls and stroke patients.
The network properties based on the wPLI and DTF were
calculated. We predicted the FMA upper limb using partial
least squares regression. Results: A higher DTF in the mu
band was observed in stroke patients than in healthy con-
trols. Notably, the difference in local properties at node F3
was negatively correlated with motor impairment in stroke
patients. Finally, using significant network properties based
on the wPLI and DTF, we predicted motor impairments
using the FMA upper limb with a root-mean-square error
of 1.68 (R2 = 0.97). This outperformed the state-of-the-art
predictors. Conclusion: These findings demonstrate that
network properties based on functional and causal con-
nectivity were highly associated with motor function in
stroke patients. Significance: Our network properties can
help calculate the predictor of motor impairments in stroke
rehabilitation and provide insight into the neural correlates
related to motor function based on EEG after reorganization
induced by stroke.
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I. INTRODUCTION

S TROKE is the primary cause of adult disability and motor
impairment worldwide [1]. Stroke survivors suffer from

motor and cognitive impairments, which have a significant im-
pact on their daily lives [2]. In this regard, it is important to
accurately investigate motor function to establish rehabilitation
therapies in stroke patients [3]. The Fugl-Meyer assessment
(FMA) [4] has been used to evaluate motor function in stroke
patients. This can be used as a behavioral assessment of motor
outcomes by trained experts. Thus, FMA may vary depending
on the evaluator, even if appropriate training has been under-
taken and standardized approaches are followed. In this respect,
predicting the FMA can help reduce reliance on the proficiency
and experience of such experts [5].

Motor imagery refers to the user imagining moving their
affected limb as a mental rehearsal to practice actual move-
ments [6]. Because stroke patients suffer motor impairments,
motor execution can be difficult, but motor imagery can be easy.
Given that motor imagery and motor execution share a neural
pathway [7], brain signals during motor imagery can be utilized
to predict motor function. During motor imagery, the primary
motor cortex (M1), premotor area (PMA), and supplementary
motor area (SMA) are activated such as motor execution in
terms of motor preparation and motor planning [8]. In addition,
Mizuguchi et al. [9] reported that the dorsolateral prefrontal
cortex (DLPFC), not the sensorimotor area, is also associated
with action planning. In this respect, it was found that the
neural pathway of the DLPFC and SMA, and the DLPFC and
PMA were shared in motor imagery and motor execution [10].
Therefore, it is necessary to include the sensorimotor area and
the brain regions that serve in motor planning for predicting
motor impairments.

Recently, attempts have been made to explore brain connec-
tivity through the relationships among brain regions. Spiegler
et al. [11] reported that functional connectivity between each
side of the M1 and SMA was found in the mu band during
motor imagery in healthy controls. However, no phase coupling
was observed between the contralateral and ipsilateral M1 dur-
ing motor imagery. In addition, Kim et al. [10] described the
coupling strength from the PMA to the DLPFC during motor
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imagery in healthy controls. Similarly, Lee et al. [12] reported
that directional connectivity from the SMA to the DLPFC was
correlated with motor imagery performance. In stroke patients,
the degree of centrality in the sensorimotor area was lower
than that in the initial motor imagery [13]. However, research
into brain connectivity in stroke patients during motor imagery
remains to be studied.

In most studies, motor imagery has been focused on a simple
limb such as the left hand, right hand, or foot. However, complex
motor imagery tasks, such as finger tapping, reflect corticospinal
damage, which is the leading cause of permanent disability after
stroke. Therefore, complex tasks are particularly relevant in
assessing post-stroke motor function [14]. In addition, tapping
of a finger during a sequence of trials is a good opportunity
to check the motor function of the patient from the viewpoint
of motor imagery learning [15]. Because reorganization of the
motor network of the brain is induced through stroke [8], the
brain characteristics of healthy controls and stroke patients differ
during consecutive motor imagery. However, research on brain
connectivity in stroke patients during these complex tasks is still
needed.

In this study, we predicted motor impairments based on the
FMA upper limb (UL) using electroencephalography (EEG)
signals. EEG signals are widely used for identifying biomarkers
because they have a high temporal resolution, and their cost
is much lower than that of other neuroimaging devices [3].
We investigated the brain connectivity in healthy controls and
chronic stroke patients during motor imagery. They performed
consecutive finger tapping imagery tasks in repeated trials.
Given that repeated trials induced motor learning, we hypothe-
sized that later trials, as well as initial trials, during consecutive
motor imagery, could be an important predictor of FMA-UL.
Therefore, we analyzed both initial and later trials.

The weighted phase lag index (wPLI) and directed trans-
fer function (DTF) were used to explore brain connectivity.
Specifically, the wPLI is a functional connectivity measure to
identify statistical interactions of phase lag (angles of phase
locking) between two signals [16], which can be helpful for
observing neural interactions between regions based on known
delays for region-to-region communication [17]. In addition,
DTF is a popular measure of causal connectivity for exploring
the directional relationships among brain regions [18]. It is
important to investigate causal relationships that consider the
effects of different information flows because EEG signals are
nonstationary, vary, and affect brain regions over time [19]. We
also calculated the network properties based on graph theory
using the wPLI and DTF. We hypothesized that the network
properties would explain the brain better than the connectivity
indicators themselves, given that the local and global networks
work together organically [20]. Finally, we conducted corre-
lation and regression analyses to predict motor impairments.
These results can provide insight into the motor mechanism by
presenting the factor associated with FMA and alleviating the
difficulties faced by professionals.

The main contributions of this study can be summarized as:
� We proposed the network properties for FMA-UL using

functional and causal connectivity based on the brain
network.

� We compared the motor network between stroke patients
and healthy controls during consecutive motor imagery in
terms of motor imagery learning.

� We investigated the role of the DLPFC in directly affecting
motor networks in motor impairment.

II. RELATED WORKS

EEG has long been used to predict functional outcomes,
including motor impairment and motor recovery in stroke pa-
tients. Initially, the frequency, amplitude, and localization of
corticoelectrical activity were proposed as biomarkers using
qualitative EEG analysis [21]. However, biomarkers through
this visual interpretation have low predictive performance, so
quantitative EEG analysis has begun to emerge as an alternative
approach. This analysis means processing EEG data with various
algorithms, for example, further analyzing power ratios between
specific frequency bands [21]. Finnigan et al. [22] reported that
delta/alpha power ratio was positively correlated with patients’
clinical outcomes 30 days later. Similarly, Sheorajpanday et
al. [23] also showed that (delta + theta)/(alpha + beta) ratio had
a highly positive correlation with functional outcome 6 months
after ischemic stroke. In Chiarelli et al. [24], EEG effective
power using delta, theta, alpha, and beta bands had a positive
correlation with motor function, so it was used as a feature
to predict recovery after 6 months. Using EEG activity during
motor imagery that can provide unique information absent in
resting-state, the power ratio index showed a significant negative
correlation with the functional outcomes, showing the possi-
bility of best predictor for brain-computer interface in stroke
patients [25]. In fact, the power ratio index, delta/alpha ratio,
and brain symmetry index in quantitative EEG analysis were
used to predict FMA-UL for predicting motor recovery [26].

Brain connectivity is recently used as a reliable biomarker to
characterize the brain. Tewarie et al. [27] showed a positive
correlation between resting-state functional connectivity and
oscillatory amplitude during motor execution using magnetoen-
cephalography (MEG) signals in healthy subjects. Specifically,
under global network coupling and local multi-stability, os-
cillatory modulation was linked with long-range connectivity.
In addition, Hordacre et al. [28] reported that resting-state
functional connectivity correlated with the response to anodal
transcranial direct current stimulation (tDCS) using EEG signals
in healthy subjects. Specifically, beta connectivity could be a
strong predictor of tDCS effects. However, these studies did
not directly investigate the relationship between motor function
outcomes and participation in stroke patients.

Neurophysiological biomarkers based on brain connectivity
were used to predict motor impairment or motor recovery.
Rathee et al. [29] reported the prediction of post-stroke UL
using a resting-state functional network based on MEG signals.
The inter-hemispherical network was positively correlated with
motor cortical regions. However, this work is less practical when
using MEG signals. Philips et al. [30] used functional connec-
tivity in EEG signals during the movement of the shoulder and
elbow. They reported a negative correlation between the density
of the unaffected hemisphere and the FMA-UL score for motor
recovery using Spearman’s correlation (rho = −0.46). High
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Fig. 1. Experimental design in one block. The first finger to tap is presented as a red dot, and the fingers are then imagined at 1.3 s intervals for
each dot in the given order. At least three white dots are indicated. At the end of the block, as the evaluation part, the subjects actually press their
fingers in turn.

initial values of local efficiency over the beta band also predicted
motor improvements based on the FMA-UL (R2 = 0.16). Riahi
et al. [5] estimated the FMA-UL using functional connectivity.
Specifically, alpha coherence showed a positive correlation with
FMA-UL. The authors predicted FMA-UL using partial least
squares regression and resulted in an R2 of 0.91 in all ten stroke
patients.

However, related studies did not use directed connectiv-
ity, such as causality, and measured functional connectivity,
which does not reflect the time-series information. In addi-
tion, motor function in stroke patients was evaluated based
on functional connectivity, but no comparison was explored
for healthy subjects with normal motor function. Therefore,
it is unclear which are reliable biomarkers. In this study, we
further calculated the causal connectivity to explore the direction
of brain connectivity. In addition, the brain connectivity in
healthy subjects was compared. The proposed network prop-
erties would complement motor assessments for predicting the
FMA-UL.

III. MATERIALS AND METHODS

A. Subjects

Twelve healthy controls (54.8 ± 2.2; F = 4) and twelve
chronic stroke patients (53.8 ± 6.5; F = 5) were enrolled
in this study. The data were previously published by Lee et
al. [15]. Supplementary Table I shows the clinical information
of the chronic stroke patients. Please see the Supplementary
Document for detailed inclusion and exclusion criteria. This
study was approved by the Institutional Review Board (IRB)
at Samsung Medical Center (SMC 2013-02-091) and written
informed consent was obtained from all subjects.

B. Experimental Paradigm

A sequential finger tapping imagery task was conducted using
the affected hand in stroke patients. In healthy controls, during
motor imagery with both hands separately or both hands to-
gether, dominant M1 was activated whereas non-dominant M1
was deactivated [31]. In other words, the corticomotor excitabil-
ity of dominant M1 increased regardless of the moving direction
of the hand. In this regard, the dominant hand was used in healthy

controls to maximize the network difference compared to the
lesion side of stroke patients [15]. All controls were right-handed
using the Edinburgh Handedness inventory [32].

Our experimental design was a trial-randomized block design.
This paradigm was composed of 20 blocks, and each block con-
sisted of direction, motor imagery task, evaluation, and resting
parts. There were at least three trials for each block. This was
done to prevent habitual pressing during the evaluation of each
block. Fig. 1 represents the experimental design of a block.
For the direction part, an image of the hand was marked by
a specific finger with a red dot to indicate the tapping of the
starting finger during the motor imagery task. The finger used
to start the tapping task was randomly presented in each block.
An image was shown for 4 s. In the motor task part, at least
three or more stimuli were given a white dot every 1.3 s. The
subjects were instructed to imagine tapping the button whenever
a white dot appeared. The white dot was presented for 0.8 s and
then disappeared. The number of dots was random to avoid the
prediction of the final tapping finger during the evaluation part. A
black screen was then shown for 0.5 s. The order of finger tapping
was from the index finger to the little finger except for the thumb.
After the little finger was over, it was the order of the index
finger again. At the end of the experiment, an evaluation was
conducted. The subjects were instructed to press the next finger
to be tapped physically. For example, if the index finger was
marked with a red dot in the direction, it was followed by three
white dots. Then, in the motor task part, the subject imagined
tapping their index finger, middle finger, and ring finger in order.
During the evaluation, it was considered that pressing the little
finger resulted in the correct block of the motor imagery. If the
subject pressed the other finger, not the little finger, this can be
clearly judged that the subject did not properly imagine. In this
regard, we considered an accurate performance as corresponding
to the actual conduction of a motor imagery task. Finally, a
rest period was provided with a plus sign, which was randomly
presented for 3, 5, or 7 s to minimize the impact on the next
block.

C. EEG Acquisition and Pre-Processing

The EEG signals were measured using a Neuro-Prax EEG sys-
tem (NeuroConn GmbH, Germany) from 27 surface Ag/AgCl
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electrodes (Easy Cap, Germany) using the international 10–10
system. Signals were collected from a sample rate frequency of
4,000 Hz.

The data were processed using the EEGLAB toolbox [33]
with MATLAB R2018b (MathWorks, USA). The EEG data were
down-sampled at a rate of 500 Hz. Continuous signals were
filtered from 1 to 45 Hz using a basic finite impulse response
(FIR) filter. Artifacts such as eye blinks were removed from the
data using independent component analysis, which were then
segmented into−1.5–4 s epochs based on the dot during the first
trial. EEG data were re-referenced to the average of all electrode
potentials [34]. In this way, because there were at least three trials
for each block conducted every 1.3 s, we measured the epoched
data for the three trials of each block. A pre-stimulus baseline
of the epoched data during the −1.5–0 s period was removed.
Finally, since there were at least three trials in one block, we
included only the (initial) first and (later) third trials.

The EEG data were filtered into two frequency bands (mu
band of 8–12 Hz and a beta band of 13–30 Hz) related directly
to the motor function using an FIR filter. As a result of the
evaluation part, the epoched EEG data from the incorrect re-
sponses were excluded from further analysis. Thus, an average
of 17.67 ± 2.23 and 13.50 ± 5.84 blocks out of 20 blocks
was used for healthy controls and stroke patients, respectively.
Furthermore, since healthy controls conducted motor tasks using
their right hand (dominant hand), the EEG signals in 5 of the 12
chronic patients who suffered the stroke in the right hemisphere
were mirrored across the midline for homogeneity and statistical
analysis.

D. Connectivity Estimator

The brain network consists of a node and an edge connecting
these nodes. Here, the channel is considered as a node. Supple-
mentary Fig. 1 shows the overall flowchart for measuring the
connectivity estimators and network properties.

1) Functional Connectivity: We used the wPLI as a con-
nectivity measure between the two nodes. This allowed phase
lag interactions to be detected from a complex coupled brain
network. In addition, this method is robust to volume conduction
and noise artifacts [16]. We calculated 27 × 27 wPLI between
the two nodes in all brain regions as follows.

wPLI =
|E{J {X}}|
E{|J {X}|} =

|E{|J {X}|sgn(J {X})}|
E{|J {X}|} (1)

where J {X} means the imaginary component of the cross-
spectrum X = ZiZ

∗
j between two nodes i and j, Zi and Z∗

j

indicate the complex-valued Fourier transform of the signal of
node i and the complex conjugate ofZj , respectively. In addition,
E{•} refers to the expected-value operator.

2) Effective Connectivity: The DTF for the causal relation-
ship between two nodes was calculated using the HERMES
toolbox [35]. This uses a multivariate autoregressive model and
is robust to volume conduction effects [18].

DTFij(f) =
Hij(f)√

hH
j (f)hj(f)

(2)

where DTFij(f) indicates DTF from node i to node j. i means
the row of the H(f) matrix and j and m are its columns. H(f)
refers to the transfer function matrix: H(f) = [I −A(f)]−1,
where A(f) is the Fourier transform of the coefficients. More-
over, (.)H indicates the Hermitian transpose [35].

The DTF was normalized to the total outflow of informa-
tion [35]. In other words, row-wise normalization limits in-
coming connection values to regions. Thus, the value of each
incoming connection strength is decided together by the other
connection strengths. This means that increasing the impact
strength from one region to the target region reduces the con-
nection value to another region [36]. Therefore, DTF can affect
indirect connections. In this regard, DTF does not distinguish
between direct and indirect interactions.

3) Thresholding Connectivity Measure: We then applied
the threshold for subject-wise matrices. This is important to
decrease the possibility of false negatives, while only identifying
functionally relevant connections [37]. To explore the optimal
connection density, we used the mean global and local effi-
ciencies from 100 random graphs with 27 nodes. Here, global
efficiency refers to the aggregated capacity of integrated process-
ing, whereas local efficiency refers to the local information of
segregated processing in the brain network [20]. The threshold
density was selected when the differences between the global
and local efficiencies were maximized (density = 0.302) [38].
Therefore, among all 729 connections in the 27 × 27 wPLI in
the brain network, only 210 strong connections remained.

E. Network Properties

Network analysis can characterize brain connectivity as a
small number of neurobiologically easily and useful calculated
measurements. These properties detect various functional inte-
gration and separation of the brain and quantify the centrality of
individual brain regions or pathways [20]. Based on the connec-
tivity measures, we calculated the global and local properties us-
ing the Brain Connectivity Toolbox [20]. These were calculated
in the mu and beta bands, and local properties were measured
over five regions (DLPFC, PMA, SMA, contralateral M1, and
ipsilateral M1) related to a motor network [9]. Specifically, we
considered node C3 as contralateral (ipsilesional) M1, node C4
as ipsilateral (contralesional) M1, node Cz as SMA, node Fz as
PMA, and node F3 as the left DLPFC [39], [40].

1) Global Efficiency: The global efficiency (Eglob) repre-
sents the mean inverse of the shortest path length in all pairs of
nodes as a measure of integration.

Eglob =
1

N

∑
i∈N

∑
j∈N,i∈j d

−1
ij

n− 1
(3)

where dij indicates the shortest path length between nodes i and
j, and N and n refer to the number of all nodes in the network
and the number of individual nodes, respectively [20]. Global
efficiency is primarily influenced by short paths; therefore this
can be a better measure of network integration compared to the
average shortest path length [41].

2) Local Efficiency: The local efficiency (Eloc), as a mea-
sure of segregation, represents the mean of all global efficiency
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in every sub-network on each node [20].

Eloc =
1

N

∑
i∈N

Eglob(Ai) (4)

where Ai is the sub-network of the first neighbours of node i
[42].

3) Eigenvector Centrality: Eigenvector centrality is a self-
referential measure of centrality and has a higher value associ-
ated with many other nodes [20]. In addition, this detects the
nodes connected to high-degree nodes that have many connec-
tions with other neighboring nodes as the measure of centrality
in the network [43]. This measure is computed as the spectral
measure of centrality:

Ax = λx (5)

where matrix A is the weighted matrix of wPLI. λ is the largest
eigenvalue and x is the corresponding eigenvector.

xi = µ
N∑

n=1

aijxj (6)

where µ= 1/λ such that xi represents the eigenvector centrality
of node i in the normalized eigenvector belonging to the largest
eigenvalue of A in the brain network [44].

4) Degree: The degree in node i (Di) is calculated as the
number of links connected to a node.

Di =
∑
j∈N

Wij (7)

where Wij refers to the connection weights between nodes i and
j when nodes i and j are neighbors [20].

In directed connectivity, it can be extended to in-degree and
out-degree in each node.

Din
i =

∑
j∈N

aji (8)

Dout
i =

∑
j∈N

aij (9)

where aij refers to the connection weights from node i to node
j. In other words, aij is not always equal to aji [20].

F. Evaluation

The averaged connectivity measures and network proper-
ties across all blocks for each subject were used to predict
the FMA-UL. Pearson’s correlation analysis was calculated.
In detail, correlation between each connectivity measure and
FMA-UL scores was computed for all stroke patients. We also
used the global permutation test to evaluate the significance of
the correlation coefficient with multiple comparisons [5]. This
test evaluates whether the effect expressed as a latent variable,
a given unobservable variable, is strong enough to differ from
random noise in a statistical sense [45]. The response variable
(FMA-UL scores of the patients) was randomly shuffled at 1,000
times while keeping the original order of the predictor variable
(connectivity features). This means that a new singular value
sample is obtained by reordering the FMA-UL scores. Then, the

distribution of singular values obtained from the randomization
test was generated. If a singular value is within the top 50 samples
of the distribution under the null hypothesis, it is considered
statistically significant.

To predict the FMA-UL in patients, we carried out partial
least squares regression [46] using connectivity measures and
their network properties. This is well suited for analyzing elec-
trophysiological activities using a multivariate statistical ap-
proach [45]. A leave-one-out approach was used for training and
testing [5]. For the performance measure, the root-mean-square
error (RMSE), and R2 were applied during the regression anal-
ysis. The RMSE indicates the difference between the actual and
predicted FMA-UL, and R2 represents how close the predicted
data are to the fitted regression line [47].

In addition, we compared the predictive performance with
state-of-the-art methods. The brief descriptions of each method
are as follows.

� Wu et al. [46] computed coherence as functional connec-
tivity in high beta band (20–30 Hz). Next, they used the
coherence between the ipsilesional M1 (C3) and PMA (Fz)
for predicting FMA-UL.

� Philips et al. [30] used the generalized measure of associ-
ation (GMA) as functional connectivity in the beta band
(12.5–25 Hz). The connectivity measure was then applied
to a threshold of 0.05. Finally, the local efficiency was
computed for all nodes.

� Riahi et al. [5] used the phase lag index (PLI) for nodes
FP2-F7, F7-F3, F8-C4, and FC2-Cz at a medium alpha
frequency (11 Hz). This predictor was the highest com-
pared to other connectivity measures (spectral coherence,
imaginary part of coherence, phase clustering, and wPLI).

G. Statistical Analysis

We compared the behavioral accuracy of motor imagery tasks
between healthy controls and patients that had a stroke. Non-
parametric permutation-based t-tests were used with Bonferroni
correction for multiple comparisons. To compare the difference
in the wPLI, DTF, and network properties between healthy
controls and stroke patients, the non-parametric permutation-
based t-tests were also performed (r = 1,000). In addition,
the non-parametric permutation-based t-tests with Bonferroni
correction for multiple comparisons were used to investigate
the changes in network properties from the first trial to the third
trial within groups. These permutation tests are very effective
for statistical analysis of non-parametric data by using surrogate
data for sufficient sets of statistics in the null hypothesis [48].
The significance level was considered to be a p-value of 0.05.

IV. RESULTS

A. Behavioral Difference of Motor Imagery Between
Groups

The subjects were first told to imagine using their fingers to
tap buttons. Then, we evaluated whether they clearly performed
the motor imagery through the final fingers that had to be
pressed at the end. This behavioral accuracy decreased when
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Fig. 2. Topological differences in connectivity measures between healthy controls and stroke patients. This represents the averaged results of all
stroke patients and healthy controls in (a) wPLI and (b) DTF. The position of each channel represents the node, and the edge connecting the node
is represented by the t-value using a non-parametric permutation test with Bonferroni correction for the connectivity measures between healthy
controls and stroke patients. Here, we only drew edges with significant differences that had a p-value of less than 0.05 with Bonferroni correction to
show a significant difference. We highlighted five nodes (node C3 as the contralateral (ipsilesional) M1, node C4 as the ipsilateral (contralesional)
M1, node Cz as the SMA, node Fz as the PMA, and node F3 as the left DLPFC) of interest in yellow. The red line indicates statistically stronger
connections of healthy controls, and the blue line indicates a statistically stronger connection of stroke patients. The left hemisphere indicates the
contralateral or ipsilesional direction in healthy controls and stroke patients, respectively. In other words, in these plots, all subjects performed the
finger tapping task with their right hands.

the subject pressed the wrong finger or failed to press the finger.
The accuracy of behavior in consecutive motor imagery provided
information on whether motor imagery had actually been clearly
performed, which was also related to clear EEG patterns during
motor imagery. In imagery tasks, it was usually unclear whether
the subject actually performed their imagined movement or
remained still. The results showed that the behavioral accuracy in
healthy controls and stroke patients was 88.33 ± 11.15% (mean
± standard deviation) and 67.50±29.19% using the dominant or
affected hand, respectively. The performance in stroke patients
was significantly lower than in healthy controls (t = −2.304, p
= 0.039). We excluded the incorrect block from further analysis.

B. Difference in Brain Connectivity Between Groups

1) Functional Connectivity: Fig. 2(a) shows the differ-
ences in the wPLI between stroke patients and healthy controls
over the mu and beta bands. The front-parietal connection was
generally prominent, especially in stroke patients. In beta band,
the wPLI in healthy controls was stronger compared to stroke
patients, especially in parietal region.

However, there were no differences in 20 connections of the
motor network including the DLPFC between healthy controls
and stroke patients in both trials and frequency bands.

2) Effective Connectivity: We observed a higher DTF in
stroke patients over the mu band compared to healthy controls
in both the first and third trials (Fig. 2(b)). Specifically, long
connectivity between the front and back was observed, rather
than connections between the two hemispheres.

In addition, we compared the motor network of the DTF
between stroke patients and healthy controls. In particular, there
was a statistically significant difference in DTF from Cz to other
nodes (Supplementary Fig. 2). In the first trial, DTF from Cz to

Fz (t = −2.456, p = 0.021) and C3 (t = −2.359, p = 0.031)
in stroke patients was higher than in healthy controls over mu
band. On the other hand, in the third trial, there was a higher
DTF from Cz to C4 (t = −2.608, p = 0.029) in the mu band.
The outliers shown in Supplementary Fig. 2 were all different
subjects, which did not have a high DTF of a particular subject.
Moreover, there was a higher DTF from Cz to F3 (t = −1.979,
p = 0.045) over the beta band in stroke patients than in healthy
controls. In addition, a higher DTF from C4 to F3 was found in
stroke patients than in healthy controls (t=−2.717, p= 0.029)
in the beta band.

C. Difference in Network Properties Within Groups

Based on these results, we compared the network properties of
each group for repeated trials during consecutive motor imagery.
In the global efficiency based on the wPLI and DTF, there were
no significant differences between the first and third trials over
both the mu and beta bands in stroke patients. Likewise, there
was no change in consecutive trials in the healthy controls.

Fig. 3 shows the local properties based on the wPLI in node
F3 over the mu band. In healthy controls, there were no signifi-
cant differences in the degree, local efficiency, and eigenvector
centrality between the first and third trials. However, in stroke
patients, those in the first trial were significantly higher than
those in the third trial at node F3 (degree: t = 3.835, p = 0.003;
local efficiency: t= 3.500, p= 0.007; eigenvector centrality: t=
4.570, p < 0.001). In specific, healthy controls showed changes
in degree from 8.16 ± 2.69 to 8.66 ± 5.05, whereas stroke
patients showed changes in degree from 9.16 ± 4.26 to 5.50
± 2.71. Next, in local efficiency, it changed from 0.72 ± 0.10 to
0.63 ± 0.16 in healthy controls, and from 0.73 ± 0.15 to 0.53
± 0.28 in stroke patients, respectively. In eigenvector centrality,
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Fig. 3. Difference in mu network properties at node F3 between
healthy controls and stroke patients. We investigated (a) degree, (b)
local efficiency, and (c) eigenvector centrality over mu band based on
the wPLI. Each point is the averaged local properties on the blocks in
each subject. The error bars indicate the standard deviation. * indicates
significance using non-parametric permutation-based t-tests between
trials (p < 0.05) with Bonferroni correction.

changes from 0.19 ± 0.05 to 0.18 ± 0.10 in healthy controls
and from 0.20 ± 0.08 to 0.12 ± 0.06 in stroke patients were
observed. In the beta band, there was a significant difference
in only local efficiency based on the wPLI in stroke patients at
node Fz (t = 1.478, p < 0.001).

In DTF-based local properties, only local efficiency in stroke
patients over the mu band was observed (t = 1.942, p = 0.031).
No significant differences in eigenvector centrality, in-degree,
and out-degree were observed in both healthy controls and stroke
patients.

D. Correlation With FMA-UL in Stroke Patients

1) Connectivity Measure: We explored the correlation with
FMA-UL in the motor network of the wPLI and DTF in stroke
patients. A positive correlation with FMA-UL was observed only
for the wPLI between nodes C3 and C4 (rho = 0.723, p-value

Fig. 4. Correlation between DTF and FMA-UL in stroke patients. The
correlation coefficient with directional connectivity was calculated using
(a) mu band with the third trial and (b) beta band with the first trial.

= 0.007). Except for that, there was no relationship between the
wPLI in 19 connections of the motor network with FMA-UL.

We also found a statistical correlation between DTF in the
motor network and the FMA-UL. In the mu band with the first
trial, there was no correlation with FMA-UL. In the third trial
over the mu band, we showed the DTF from C4 to F3 and Fz
negatively correlate (Fig. 4(a)). In the beta band, DTF from
Fz to C4 was negatively correlated with FMA-UL, whereas
DTF from C3 to C4 was positively correlated (Fig. 4(b)). Fi-
nally, no relationship was observed in the third trial over the
beta band.

2) Network Properties: As a global property, we measured
the global efficiency, and as the local properties, we calculated
the local efficiency, eigenvector centrality, and degree based on
the wPLI and DTF. Fig. 5 shows the relationship between global
efficiency using the wPLI and FMA-UL. Only the wPLI-based
global efficiency in the first trial over the beta band was positively
correlated with the FMA-UL (rho = 0.680, p = 0.015). On the
other hand, when the third trial was used, there was no significant
relationship with FMA-UL.

We explored the local properties of each five node. At node
F3, there was a negative correlation with the wPLI-based local
efficiency in the first trial over the beta band (rho = −0.643,
p = 0.023). We found the statistical relationship at node Fz
(Fig. 6). There was a positive correlation between FMA-UL and
wPLI-based local efficiency in the first trial (rho = 0.668, p =
0.018). In the third trial over mu band, wPLI-based degree and
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Fig. 5. Correlation with global efficiency based on wPLI over beta
band. The red and blue dots indicate the global efficiency in the first
and third trials, respectively. Each dot means averaged global efficiency
of the corresponding trial in all blocks on each subject. The solid lines
represent linear fits to the data. In particular, the gray line refers to no
significant correlations with a p-value of 0.05 or less, and the red or blue
line indicates that each global efficiency (GloE) is statistically correlated
with the FMA-UL.

TABLE I
PREDICTION OF FMA-UL USING LEAVE-ONE-OUT CROSS-VALIDATION

NP = network properties.

eigenvector centrality were negatively correlated with FMA-UL
(degree: rho = −0.749, p = 0.005; eigenvector centrality: rho
= −0.726, p = 0.008). At node C3, there was no correlation
with the local properties. In the first trial, there was a negative
correlation in the wPLI-based degree in the node Cz (rho =
-0.620, p = 0.031) and DTF-based local efficiency in node C4
(rho = −0.714, p = 0.009).

E. Prediction of Motor Impairment in Stroke Patients

We predicted the FMA-UL using connectivity measures
and network properties were statistically correlated with the
FMA-UL in stroke patients. We also used leave-one-out cross-
validation based on the partial least squares regression. Table I
shows the predicted FMA-UL using wPLI, DTF, and their
network properties using partial least squares regression.

TABLE II
COMPARISON OF PROPOSED METHOD WITH STATE-OF-THE-ART STUDIES

In the wPLI, we predicted only one feature (beta wPLI
between C3-C4 with the third trial) that was correlated with
FMA-UL. Using the DTF, as shown in Fig. 5, four features (mu
DTF from C4 to F3 and Fz, beta DTF from Fz and C3 to C4)
were used to predict FMA-UL. Compared with the connectivity
indicators, the RMSE was low, and R2 was high when DTF was
used. In other words, performance using causal connectivity was
the highest. In the wPLI-based network properties, six features
(beta global efficiency with the first trial, mu local efficiency with
the first trial, mu degree and eigenvector centrality with the third
trial, beta degree and local efficiency with the first trial) were
used, whereas two features (beta local efficiency with the first
trial over node Fz and C4) in the DTF-based network properties
were used. Finally, the prediction was best when all network
properties based on the wPLI and DTF correlated with FMA-UL
were used.

F. Comparison of Our Method With State-of-The-Art
Studies

We computed the predictive performance of the FMA-UL
using the state-of-the-art studies shown in Table II. In Wu
et al. [46] used high beta coherence between nodes C3 and
Fz. Using only the first trials, the RMSE and R2 were 9.773
and 0.087, respectively. In the third trial, the performance was
slightly improved, with RMSE andR2 values of 9.279 and 0.177,
respectively. However, when combined with the first and third
trials, RMSE and R2 had the highest performances of 9.042 and
0.218, respectively.

Philips et al. [30] used the local efficiency based on the GMA.
When the first and third trials were used, the RMSEs were 9.950
and 10.183, andR2 was 0.054 and 0.009, respectively. However,
the combination of the first and third trials resulted in a lower
performance than the first trials, with RMSE and R2 values of
9.892 and 0.065, respectively.

Riahi et al. [5] computed the PLI over a medium alpha
frequency. In the first trial, the RMSE and R2 were 8.409 and
0.324, respectively. In addition, RMSE and R2 were 7.221 and
0.502, respectively, when only the PLI with the third trial was
used. When both trials were used, the RMSE and R2 were 5.780
and 0.681, respectively, and the performance was higher than
when each trial was used.

Except for local efficiency, the predictive performance was
higher in both the coherence and PLI trials. Nevertheless, the
proposed model showed a higher predictive performance than
the best from each state-of-the-art method.
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Fig. 6. Correlation with local properties based on the wPLI at Fz in the mu band. There are degree, local efficiency (LocE), and eigenvector
centrality (EC) in the local properties. The red and blue dots indicate the local properties in the first and third trials, respectively. In specific, each
dot means averaged local properties of the corresponding trial in all blocks on each subject. The solid lines represent linear fits to the data. The
gray line refers to no significant correlations with a p-value of 0.05 or less, and the red or blue line indicates that each local property is statistically
correlated with the FMA-UL.

V. DISCUSSION

This study investigated the differences in the wPLI and DTF
between healthy controls and chronic stroke patients during
motor imagery. In motor networks including the DLPFC, there
was no difference in the wPLI between the two groups. However,
the DTF in stroke patients was significantly higher than in
healthy controls. Moreover, the differences in network properties
between consecutive trials were explored within each group.
According to consecutive trials in healthy controls, there was
no difference in the network properties, but a decrease in the
network properties was observed in stroke patients. Based on
these findings, the wPLI, DTF, and their network properties were
significantly correlated with the FMA-UL in stroke patients. In
addition, we predicted the FMA-UL in stroke patients using
correlated connectivity measures and network properties.

A. Differences in Interregional Interactions Over Time

We found that the local properties decreased in stroke patients
from the first to the third trial during consecutive motor imagery.
During motor imagery, a decrease in degree, local efficiency, and
eigenvector centrality was found over node F3 (left DLPFC)
in the stroke patients. However, no changes were observed in
the healthy controls. This finding can be explained from the
perspective of motor imagery learning [15]. In healthy controls,
previous imaginations do not affect them. However, in stroke
patients, the impact of the first trial affects later trials in terms
of motor learning. Specifically, the oscillatory activity over the
ipsilesional hemisphere of stroke patients tends to decrease
through repeated trials during motor imagery [15]. This phe-
nomenon is thought to affect brain connectivity.

The role of the DLPFC is motor planning, including in
preparatory motor networks [49], which occurs in the early
phases of motor training [50]. In addition, the network properties
in the DLPFC are associated more with higher-order cognitive
motor preprocessing through motor control [51]. Similar to the
SMA, it also appears to play a role in movement inhibition [49].
In this sense, because the motor network of stroke patients was

basically broken, the activity of the local network over the left
DLPFC was considered to be stronger in the early stages than
in healthy controls.

It is also noteworthy that the local properties during con-
secutive motor imagery in stroke patients and healthy controls
differ more than the global property. Mazrooyisebdani et al. [52]
reported that an alteration in regional centrality could be used to
evaluate the motor network. In stroke patients, in particular, only
a part of the brain is damaged, and thus the local network seems
to show a difference in brain connectivity in consideration of
neural plasticity. There were no differences in the global network
under a longitudinal change before or after the rehabilitation of
stroke patients, although significant differences were observed
in the local network.

It is necessary to ensure that changes in connectivity with
motor imagery trials do not affect other factors such as fatigue,
focused attention effects, or understanding of the task. First of
all, the motor imagery task was performed, so we focused on the
mu and beta bands and motor networks (brain central regions)
related to movement. On the other hand, fatigue is connected
with increased frontal theta and parietal alpha activities [53].
In addition, attention is associated with parieto-occipital alpha
amplitude [54]. In this respect, it is believed that our findings
would not be the effect of fatigue and attention. Regarding the
understanding of the task, the understanding from the first to
third trials would not have improved because they had already
gone through sufficient explanation and practice before starting
the task. Above all, the interval between each trial is 1.3 sec.
Therefore, factors such as fatigue, attention, or understanding
of the task do not seem likely to affect the brain in just 1.3 sec,
and our findings are believed to be related to performing motor
imagery tasks.

B. Comparisons Between wPLI and DTF

There was no difference in the wPLI, but there was a clear
difference in the DTF for motor networks in both groups.
Functional connectivity, such as the wPLI, indicates the patterns
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of cross-correlations between two signals expected from these
brain dynamics, whereas effective connectivity such as DTF
indicates patterns of causal relationships between two signals
as directed information flow [20]. Oscillations in EEG signals
are an important feature of neurophysiological dynamics, which
are thought to restrict and supervise neural activity within and
between brain networks across a wide range of temporal and
spatial information [55]. The causal connectivity of motor-
related core regions was also observed during motor imagery
using functional magnetic resonance imaging (fMRI), which
has a high spatial resolution [56]. In this regard, the directional
connectivity of the motor network is considered to be a clear
representation of the motor functions evaluated by the FMA-UL
in stroke patients.

The DTF in stroke patients was significantly higher than that
in healthy controls in the motor network. In particular, these
features were prominently represented in the DTF from the
SMA. The SMA plays a prominent role in supporting limited
motor outcomes. In other words, this region is directly related
to descending motor control. In particular, the mu band serves
as a medium for allocating computational resources, which is
thought to be directly connected to motor planning from the per-
spective of motor learning [15]. In addition, the SMA suppresses
the M1 during motor imagery. This means that the SMA sends
signals to the M1 to prevent motor execution [57]. It is believed
that the effect of SMA on M1 is different in motor imagery and
motor execution. Although the effect of SMA is constant because
even stroke patients actually move during motor execution, the
suppression influences of SMA may vary from patient to patient
because they do not actually move during motor imagery [58].
In this respect, motor imagery may provide more insights into
brain connectivity than motor execution [59].

The high DTF of stroke patients in the SMA indicates that
the patient’s motor network is damaged, so stronger signals are
needed to both actually move and imagine movement compared
to healthy controls. In this regard, DTF over the SMA could be
highly associated with motor impairments. The performance of
motor imagery increased as the activity of the bilateral SMA in
the stroke patients improved [8]. In other words, the SMA plays
a direct role in motor imagery concerning the motor intention
network. Therefore, it is possible to observe higher DTF from
the SMA in stroke patients than in healthy controls. Meanwhile,
in stroke patients, higher DTF from SMA was directed to the
contralesional motor cortex. Other studies have also found that
brain connectivity increased after stroke, which is related to
compensating the motor function of the affected hand [60].

Taken together, a stronger DTF is a sign of motor network
damage. In patients with mild traumatic brain injury, the local
area of the damaged brain was rather weakened in connectivity,
but the long-distance connection was rather stronger [61]. This
is believed to be associated with neural plasticity, and in the end,
similar characteristics will occur in the damaged brain of stroke
patients.

The motor network also had different characteristics in each
band between the two groups. In fact, in the mu band, the DTF
from Cz to C3 was statistically higher in the stroke patient than
in healthy controls. However, this was not found in the beta band.

The mu band activity focuses on the oscillatory activity before
the stimulus, whereas the beta band is activated during kinetic
motor imagery learning [15]. Therefore, the network differences
between stroke patients and healthy controls over both the mu
and beta bands are not the same.

C. Relationship With Motor Score Using Connectivity

Interestingly, DTF from node C4 and to node C4 in stroke
patients was related to FMA-UL in the mu and beta bands,
respectively. In chronic stroke patients, it is known that con-
tralesional M1 is constructed by an inefficient network owing
to damage in the brain regions [1]. To compensate for this, the
contralesional M1 is formed by a powerful sub-network after
stroke and is observed in chronic stroke patients. In other words,
stroke patients with motor impairments had more activated
motor networks, specifically the contralateral M1, left DLPFC,
and PMA. The motor imagery decreases contralesional compen-
sation in stroke patients [62]. In this respect, the severe motor
impairments lead to a relatively small amount of compensation
reduction, resulting in a high mu DTF from the contralesional
motor cortex. This phenomenon is consistent with the fact that
network properties are higher in stroke patients than in healthy
controls. Similarly, stroke patients require more activity in motor
planning, which is clearly correlated with motor function.

Regarding network properties, we mainly observed a correla-
tion between the local properties over node Fz and FMA-UL in
stroke patients. PMA is considered to be included in the compro-
mised sub-network after stroke. Therefore, in previous studies,
the coupling strength from the PMA to the SMA during motor
imagery was higher than that during motor execution in healthy
subjects [10]. The PMA is also associated with internal modeling
and motor planning during motor imagery in healthy subjects
as shown by fMRI studies [63]. Likewise, stroke patients with
motor disabilities require more active motor planning.

The reason why other regions related to motor planning is
more prominent than the M1 is because of our novel paradigm.
Our paradigm can actually observe that subjects performed
their motor imagination correctly. Previous studies reported
differences between correct and incorrect trials during motor
imagery [10]. Clear differences could be seen in repeated fin-
ger tapping because we used only correct trials during motor
imagery.

D. Evaluation of Regression Model Using Network
Properties

Compared with functional connectivity alone, the predictive
performance using the PLI was higher than that using coher-
ence, GMA-based local efficiency, and the wPLI. However, the
performance using DTF for representing the causality between
two nodes was outperformed compared to using functional
connectivity such as the PLI and wPLI. Characterizing brain
networks in terms of functional specialization can only provide
a limited explanation of the neurological basis of the intrin-
sic process [64]. Furthermore, directed connectivity indicates
specific information to determine how and if brain activity in
the PMA and SMA influences activity in the M1 during motor
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imagery [57]. In this respect, causal indicators represent the
highest performance in the connectivity measures.

Based on this relationship with the network properties, we
achieved an FMA-UL prediction with high accuracy in stroke
patients. Many studies suggest that network properties based on
connectivity measures can better explain the brain [18]. Network
properties are considered to be the best predictor of brain reorga-
nization because they describe global and local brain networks
based on mathematical models, beyond merely explaining the
relationship between two nodes [20]. Furthermore, compared to
previous studies using resting-state data or motor execution data,
higher performance was achieved due to the direct use of brain
connectivity during motor imagery when the motor network
was activated. Taken together, our results are believed to enable
better prediction with brain connectivity during motor imagery
because motor imagery performance may vary depending on the
severity of motor impairments.

E. Limitation

This study had several limitations. First, the sample size of
stroke patients was small. In the future, this study should be
conducted with more patients in a cohort study and with other
patients with motor dysfunction. Second, electromyography
signals were not measured to check muscle movement during
motor imagery. However, our paradigm can investigate whether
the subjects actually conducted motor imagery. More precisely,
the trials that the motor imagery was not clearly performed
could be excluded. In this regard, our paradigm might have
been more effective than electromyography measurements in
that EEG signals with incorrect and correct responses during
motor imagery are different [10]. Third, the characteristics of
the lesions in stroke patients, such as the location, type of stroke,
and size were not considered. Therefore, further research based
on these characteristics is required. Next, healthy controls used
only their dominant hand when performing the motor imagery
finger tapping task. Thus, this study failed to directly explore the
small difference that occurs from non-dominant hands directly. It
would be beneficial to directly compare the differences between
dominant and non-dominant hands during motor imagery in the
future. In addition, matching the side of stroke patients with
those recorded with dominant and non-dominant in healthy
controls may be a new suggestion to explore novel findings.
Therefore, research related to this would also be investigated.
Finally, sensor-level connectivity may not be reliable because
of the volume conduction effect. Nevertheless, the connectivity
estimators we used, the wPLI and DTF, are designed to be robust
to this effect [16], and access from source-space is still required.

VI. CONCLUSION

We presented the brain connectivity and network properties
during consecutive motor imagery as decoded from EEG signals
compared to healthy controls. In addition, motor impairments
based on the FMA-UL in stroke patients were predicted using
connectivity measures and network properties. We demonstrated
that the proposed approach using network properties is superior
to conventional predictors. The higher performance using causal

connectivity compared to functional connectivity and better
prediction using network properties than connectivity measures
provided insights about the brain network to explain brain re-
organization after stroke. The proposed predictor can be used
to predict motor recovery and motor function in stroke patients
by revealing that network properties are associated with motor
impairments. It could be vital in establishing more effective
rehabilitation strategies in that motor imagery training itself
helps in the rehabilitation of motor functions. Therefore, our
findings could help enhance rehabilitation strategies according
to motor impairments using the predicted FMA-UL based on
the network properties.
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