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eRAD-Fe: Emotion Recognition-Assisted
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Abstract— With recent advancements in artificial intelligence
technologies and human–computer interaction, strategies to iden-
tify the inner emotional states of humans through physiological
signals such as electroencephalography (EEG) have been actively
investigated and applied in various fields. Thus, there is an
increasing demand for emotion analysis and recognition via EEG
signals in real time. In this article, we proposed a new framework,
emotion recognition-assisted deep learning framework from eeg
signal (eRAD-Fe), to achieve the best recognition result from
EEG signals. eRAD-Fe integrates three aspects by exploiting
sliding-window segmentation method to enlarge the size of the
training dataset, configuring the energy threshold-based multi-
class common spatial patterns to extract the prominent features,
and improving emotional state recognition performance based on
a long short-term memory model. With our proposed recognition-
assisted framework, the emotional classification accuracies were
82%, 72%, and 81% on three publicly available EEG datasets,
such as SEED, DEAP, and DREAMER, respectively.

Index Terms— Deep learning, electroencephalogram, emotion
recognition, energy threshold, feature extraction, long short-term
memory, multiclass common spatial pattern (CSP).

I. INTRODUCTION

EMOTION refers to a change in the mind and mood
state that manifests as psychological and physiological

changes after a person recognizes an external stimulus gener-
ated by a distinct situation, event, or target [1]. Emotion is the
most significant factor in daily interactions between humans
when learning or making decisions. Recently, in various
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application technology fields, the demand for intelligent sys-
tems for interactions between computer systems and humans
has increased [2]. Consequently, several studies have been
conducted to automatically understand and recognize human
intentions, states of mind, and emotions. Emotion recognition
studies have been conducted on facial expression recognition,
speech recognition, gesture recognition, and biometrics using
the core technologies of artificial intelligence, such as deep
learning, neural networks, and big data [3].

Emotion recognition technology identifies human emo-
tions and internal states through video (facial expression),
voice (tone), and biosignals (electroencephalography (EEG),
pulse, and similar methods). Video-based emotion detection
technology judges human emotional states by using feature
points on the face or by classifying behaviors through human
gestures [4]. Vocal emotion recognition technology analyzes
patterns such as trembling, speed, tempo, and intonation of a
human voice to understand the emotional state [5]. However,
methods for recognizing emotions through facial expressions,
motions, or voices lead to poor immediacy and reliability
because users can artificially distort their emotional expres-
sions. Conversely, biosignals are not directly controlled by the
user and they contain information that is highly correlated
with the internal emotional states [6]. Hence, recognizing
emotions through biosignals, such as pulse, heart rate, temper-
ature, EEGs, electromyographs, and electrocardiograms, has
more recently been considered a promising strategy. Among
these biosignals, EEG is advantageous because it captures
the relevance of mentalization and the emotional change in
real time during the process of recording a neurophysiological
activity. As a result, many researchers have focused on EEGs
to develop emotion detection systems [7], [8].

EEG captures electrical signals generated in the brain.
Typically, electrodes are placed on the scalp to detect,
amplify, and record the electrical activity generated in the
brain cells of the target region [9], [10]. Emotion recogni-
tion research using EEGs has been conducted using various
approaches. To extract features related to emotional states from
EEGs, methodologies, such as approximate entropy, differen-
tial entropy (DE), higher order crossings (HOCs), common
spatial patterns (CSPs), short-time Fourier transform (STFT),
wavelet transform (WT), power spectral density (PSD), and
fractal dimensions, including the Higuchi method [11], have
often been used. Moreover, empirical mode decomposition
(EMD) [12] and variational mode decomposition (VMD) [13]
using intrinsic mode functions (IMFs) have recently been
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proposed to provide meaningful time–frequency information
about EEG signals and extract features from them. In addition,
machine learning classifiers, such as support vector machine
(SVM), K-nearest neighbor (K-NN), and artificial neural net-
works (ANNs), have been used to assess emotion recognition
performance. In particular, deep learning-based classifiers have
primarily been used in recent times [14].

In this article, we propose emotion recognition-assisted
deep learning framework from eeg signal (eRAD-Fe), a novel
emotion recognition framework, for enhancing the accuracy of
emotional state classification based on EEG. The contributions
of the proposed system are as follows.

1) Favorable Framework: eRAD-Fe is a new framework,
which facilitates EEG-based emotion recognition by
improving the classification accuracy rate through incre-
ment of the training datasets, optimal feature extraction,
and rapid processing speed.

2) Effectiveness: The proposed framework provides a good
performance compared to state-of-the-art methods in
extracting features and classifying emotional states on
publicly available EEG datasets.

3) Applicability: The proposed framework is a promising
approach with a high classification rate of various emo-
tional states based on EEG data. In addition, it works
well on real-time data mechanisms comprising multi-
classes.

The remainder of this article is organized as follows.
Section II discusses related work on emotion recognition
using EEGs. Section III presents the proposed framework.
Section IV describes the experimental results and eval-
uation. Section V provides a discussion of this work.
Finally, Section VI presents the conclusions drawn from the
study.

II. RELATED WORKS

Emotion recognition research using EEG signals primarily
consists of three main categories: preprocessing, feature
extraction, and classification [15]. First, preprocessing elim-
inates noise and artifacts from the original data often by
using bandpass filters or independent component analysis [16].
Preprocessing is easily and conveniently performed using
an open toolbox, EEGLAB [17]. Second, feature extrac-
tion is an important stage in emotion recognition research.
Various methods for extracting features have been proposed.
For example, Duan et al. [18] extracted features using the
DE method, which measured the complexity of a pre-
processed EEG signal. Ali et al. [19] extracted features by
combining the wavelet energy, modified energy, and wavelet
entropy features for EEG-based emotion recognition for
ambient-assisted living in the field of e-healthcare, and
Ang et al. [20] extracted the features of emotional states using
DWT method. Ackermann et al. [21] employed STFT, HOC,
and Hilbert–Huang spectra to identify prominent features.
Petrantonakis and Hadjileontiadis [22] extracted emotional
state features by applying HOC, which captured patterns in
the EEG sequence, to classify six basic emotional states.
Thereafter, they improved the classification accuracy by
approximately 2% using an enhanced HAF-HOC method,

a modified version of HOC [23]. Basar et al. [24] extracted
features relating to two emotional states by applying the CSP
method, which maximized the difference in class variance, for
emotion recognition.

However, existing methods for feature extraction, such as
the Fourier transform (FT) method of frequency analysis and
the WT time–frequency analysis method, assume that the
signal is linear or that the basis functions are fixed. Given this
drawback, if the signal is complex, the basis functions are not
mapped to various attributes of the signal itself. Because the
EEG signal is a complex nonlinear/nonstationary signal, not
all significant attributes can be extracted effectively by FT or
WT, and due to this, the performance of emotion recognition
is reduced. In addition, because the entropy-based method is
an analysis approach that is applied to a single time scale
and measures the irregularity of time series, the quantification
of the time-series complexity may not be accurate [25].
To overcome this weakness, multivariate multiscale entropy
was proposed. However, this technique has the disadvantage
of discarding high-frequency constituents and capturing only
low-frequency constituents [26]. To overcome this weakness,
EMD and VMD methods were recently proposed to extract
features from an emotion dataset [12], [13].

Third, for classification, machine learning classifiers, such
as SVM and KNN, have primarily been used in EEG-based
emotion recognition studies [27]. Recently, with developments
in deep learning technology, researchers have focused on
deep learning mechanisms to boost the classification accu-
racy. In particular, Huang et al. [28] identified patterns in
EEG data by combining emotional patches with a deep
belief network model to explore the characteristics of tem-
poral information. As a result, the authors proposed the
DEEP model to recognize emotions with high classifica-
tion accuracy. In addition, Wang et al. [29] proposed a long
short-term memory (LSTM)-based classification framework
for the classification learning of motor imagery EEG sig-
nals, and Alhagry et al. [30] applied the LSTM method for
EEG-based emotion recognition using an end-to-end deep
learning approach.

Li et al. [31] combined convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) to detect
emotional states at the trial level, and Li et al. [32] extracted
features from each EEG channel using PSD. Subsequently,
a hybrid deep neural network was proposed by combining a
CNN with an LSTM-RNN to classify emotional states. Simi-
larly, Tang et al. [33] used a bimodal-LSTM model to classify
emotional states. Chen et al. [34] used a deep CNN (DCNN)
model to improve the performance of their emotion recog-
nition system by automatically learning the temporal and
frequential features extracted from the DEAP data. However,
most CNN-based approaches require complex preprocessing to
transform a raw EEG signal into an image [35]. In contrast,
the RNN-based approach is a useful method for the prediction
and analysis of time-series data using deep learning algo-
rithms without an additional data transformation process [32].
Because of its advantages, we used the RNN-based LSTM
algorithm for the classification learning of time-series EEG
data.
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Fig. 1. Emotion recognition-assisted deep learning framework.

(a) (b)

Fig. 2. Sliding-window segmentation with (a) nonoverlapped and (b) over-
lapped data.

III. MATERIALS AND METHODS

In this section, a newly proposed framework for EEG-based
emotion recognition is presented. Fig. 1 shows the eRAD-Fe
system. To improve the performance of the framework,
we increased the number of limited data points using the
sliding-window segmentation method in the preprocessing
phase. In the next phase, the optimal features were automat-
ically extracted by applying an energy threshold-based mul-
ticommon spatial pattern (ET-MCSP). Finally, these extracted
features were used as inputs for the deep learning-based LSTM
classifier for emotional state recognition.

A. Sliding-Window Segmentation

The size of the EEG dataset was expanded using
a sliding-window segmentation technique [36], as shown
in Fig. 2. Because a deep learning model can process massive
volumes of data effectively, the obtained sequences were used
as inputs for the deep learning classifier. Sliding-window
segmentation increases the number of trials (sample num-
ber) by segmenting the data to a specified window length.
We selected a window size of 10 s and applied window
overlap by moving the window at an interval of 7 s. In other
words, as shown in Fig. 2, the data of the original windows,
W1 and W2 [Fig. 2(a)] overlapped by 30% to generate OW1

and OW2 [Fig. 2(b)]. Fig. 2(b) shows the sliding operation
with an overlap of 30% used in the proposed framework.
We applied ET-MCSP to extract the optimal features with

respect to the emotional states from the data obtained from
the sliding-window segmentation in each EEG trial.

B. Energy Threshold-Based Multicommon Spatial Pattern

In this article, we applied ET-MCSP to extract emotional
state features from the EEG data [37]. ET-MCSP automatically
extracts the optimal features with regard to the emotional states
by combining the energy-threshold and traditional MCSP
methods [38]. MCSP is an expanded multiclass CSP algorithm
that identifies a spatial matrix that maximizes the difference
in class variance [24]. To extract the CSP from the composed
multiclass data, MCPS calculates the composite covariance
matrix, R, which is the sum of the covariance matrix of each
class, given by the following equation:

R = Ri + R2 + · · · + Ri (1)

where i indicates the number of classes. The eigen decompo-
sition of R is given by the following equation:

R = Q�QT (2)

where Q is a matrix of eigenvectors, � is a matrix of
eigenvalue of R, and T is a transpose operator

P =
√

�−1 QT . (3)

Using Q and �, obtained from the eigendecomposition
of R, the whitening transformation matrix, P , is calculated
using (3). P makes the covariance matrix of the transformed
signal into a unit matrix and simultaneously makes variance
into 1 to normalize the values of the transformed data. MCSP
uses a one-versus-the-rest (OVR) [39] method to extract the
CSP of each emotional state from the multiclass data. OVR
assumes that one class is R1 and the remainder of the classes
are Ŕ I , where Ŕ I = R2 + · · · + Ri

P RPT = P R1 PT + P ŔI PT = S1 + S2+···+i = I. (4)

The unit matrix requirement is satisfied by (4) when apply-
ing P in R. S is the transformed covariance matrix, and S1 and
S2+···+i share a common eigenvector. The transformed covari-
ance matrices (S1, S2+···+i ) can be decomposed as follows:

S1 = Q̄�1 Q̄T , S2+···+i = Q̄
(
1 − �1)Q̄T . (5)

Meanwhile, the spatial matrix SMn∗n can be composed
according to each emotional state as (6) through the common
eigenvector, Q̄, and P from (5). Afterward, when the spatial
matrix is applied to the original data, Xi , and the transformed
EEG signal, Z i , can be obtained using (7)

SMn∗n = Q̄T P (6)

Z i = SMn∗n Xi (7)

where X is the EEG data in an n ∗ t matrix with n channels
and time t .

To extract the features, the MCSP method generally uses the
maximum and minimum variance values of the data for each
class, and they are transformed by a spatial matrix usually by
employing data from the features [40], for example, doubling
the number of classes (2∗i) or (i(i −1))/2. However, the opti-
mal coefficients for extracting the emotional states features are
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unknown. Therefore, ET-MCSP uses an energy threshold [41],
[42] to determine the number of spatial filter coefficients
needed to classify the emotion states. In other words, as shown
in (8), to obtain the spatial filter matrix, SFm∗n , for extracting
the features according to the emotional states, m eigenvectors
Q̄m = (Q̄1, . . . , Q̄m, Q̄N−m+1, . . . , Q̄N ) were selected based
on the energy threshold, with m � N

SFm∗n = Q̄T
n∗m Pn∗n . (8)

The energy threshold of ET-MCSP was set to 90% to deter-
mine m. In this article, we determined the energy-threshold
value based on the experimental results obtained from three
EEG data.

C. LSTM-Based Deep Learning Model for Emotion
Classification

In this article, we employed the RNN-based LSTM algo-
rithm to recognize EEG-based emotional states. LSTM is
widely used for data with temporal characteristics to resolve
the long-term dependence problem [43], [44]. It is a structure
in which the cell states, namely the forget gate, input gate,
and output gate, are added to the existing RNN. The first
stage of the LSTM is the forget gate, which determines the
information to be discarded from the cell state using a sigmoid
layer, as shown in (9). This phase receives ht−1 and xt and
sends a value between 0 and 1 to the cell state Ct−1. If the
value is equal to 1, all the information is preserved; if it is 0,
all the information is discarded

ft = σ
(
W f · [

ht−1, xt
] + b f

)
(9)

where t is time, W is the weighted value, x is the input value,
h is the value of the previous node, and b is the bias.

The next stage is the input gate (hidden state) as shown
in (10), which determines parts of the new information to be
stored in the cell state, and the sigmoid layer decides the value
to update. Then, the tanh layer creates the C̄t vector, which
comprises new candidate values as shown in (11), and C̄t adds
on new cell state, Ct , as shown in (12)

it = σ
(
Wi · [ht−1, xt

] + bi
)

(10)

C̄t = tanh
(
Wc · [

ht−1, xt
] + bc

)
(11)

Ct = ft ∗ Ct−1 + it ∗ C̄t . (12)

The final stage is the output gate, which determines the
output. The output gate first receives the input data in the
sigmoid layer and determines which part of the cell state is
sent to the output, as shown in (13). Afterward, the cell state
is placed on the tanh layer and is assigned a value between
−1 and 1, which is multiplied by the output of the sigmoid
layer, to generate the output, as given by (14). Thus, only the
part that is sent as an output can be let out

Ot = σ
(
Wo · [ht−1, xt

] + bo
)

(13)

ht = Ot ∗ tanh(Ct ). (14)

In this article, we employed multiple LSTM layers to
classify the EEG emotion data. The composition of each
layer of the classification model is shown in Fig. 3. The

Fig. 3. LSTM structure for classification learning.

model comprised two LSTM layers with hidden units set to
125 and 100. Other parameters were set as follows: the dropout
was 0.5, batch size was 30, and optimizer was “adam.” In
addition, we set the learning rate as 0.001, the maximum
number of epochs as 50, and the activation function on the
LSTM layer was “than.”

IV. EXPERIMENTAL RESULTS

A. Data Description

To verify the effectiveness of the proposed eRAD-Fe, three
publicly available datasets frequently used in emotion recog-
nition research were selected: the SEED database [45], DEAP
database [46], and wireless-based DREAMER database [47].
In the SEED data, 15 subjects (seven males and eight females)
who participated in the experiment were showed approxi-
mately 15 Chinese film clips that evoked positive, neutral,
and negative emotions, and the EEGs of the subjects were
recorded for 4 min, while the clips were played. The data
for each subject comprised 45 trials downsampled to 200 Hz,
using a total of 62 channels (15 subjects × 45 trials ×
62 channels × 4 min). In the DEAP dataset, 32 subjects who
participated in the experiment were shown 40 music videos,
and the physiological signals of the subjects were recorded.
In addition, the subjects specified rating values according to
four emotional states (valence, arousal, liking, and dominance)
using consecutive numbers between 1 and 9. The length of
the DEAP data was 63 s sampled at 128 Hz in 32 channels
(32 subjects × 40 trials × 32 channels × 8064 data length).
In the DREAMER dataset, 23 subjects were shown 18 video
clips with audiovisual stimuli, and their physiological signals
were measured using wireless Emotiv EPOC+ equipment with
14 channels for EEG and ECG recording. The length of each
video clip was between 1 and 10 min, and the EEG data
were sampled at 128 Hz. The subjects specified rating values
according to three emotional states (valence, arousal, and
dominance) using the consecutive numbers between 1 and 5.

A summary of the data used in this study is shown in Table I.
As shown in Table I, all the subjects’ data in the SEED
dataset were used in the experiment. However, the DEAP and
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TABLE I

NUMBER OF EEG EMOTION DATA FOR EXPERIMENTS

DREAMER datasets were divided into emotion classes based
on the rating values of the subjects. For the DEAP data, the gap
between the classes was handled by discarding records with
ratings between 4 and 6 on the valence–arousal plane, and
the remainder were divided into four classes: HVHA, LVHA,
HVLA, and LVLA. For instance, the valence and arousal
ratings in HVHA were greater than or equal to 7. Moreover,
in HVLA, the valence rating was greater than or equal to 7,
whereas the arousal rating was less than or equal to 3. The
DREAMER data were categorized similar to the DEAP data
using valence–arousal plane ratings greater than or equal to 4
as high and valence-arousal plane ratings less than or equal
to 2 as low to divide the data into four classes: HVHA, LVHA,
HVLA, and LVLA. We used the datasets composed of subjects
within the range of the rating conditions and included all
four classes for the DEAP and DREAMER data, as presented
in Table I. In addition, we used an equal number of trials per
class to solve the class imbalance problem.

B. Emotion Recognition-Assisted Framework

1) Sliding-Window Segmentation: The eRAD-Fe proposed
in this article utilizes sliding-window segmentation with over-
lap to increase the processing speed and increase the number
of training data for emotion classification based on deep
learning model. Table II lists the experimental results obtained
to determine the optimal window size and overlapping rate.
We used a five-subject dataset chosen randomly from each
dataset for this experiment, considering the number of subjects
in the DEAP dataset. In addition, we used equal trials per class
considering the class imbalance problem of each subject’s data.
We performed an experiment that used lengths of 1, 3, 5, 10,
and 20 s to find the optimal window size for segmentation
and the best overlapping rate according to 10%, 20%, 30%,
40%, and 50% and nonoverlapping (0%), that is, we compared
and analyzed the emotional states classification accuracy by
experiments in which the data were segmented according
to each window size with or without overlapping, features
extracted using ET-MCSP, and the emotional states classified
by the LSTM model, which uses the extracted features as
input. The classification accuracy was measured using tenfold
cross validation.

To perform tenfold cross validation, we divided the total
number of trials of each subject into ten groups. One group
was used as the testing data and the remaining groups were
used as training data for the classifiers (one group includes
all classes). We repeated the trial ten times until each K -fold
became a test set, and the obtained score from this process
presented the classification accuracy of each subject. As shown

TABLE II

CLASSIFICATION ACCURACY ACCORDING TO THE SLIDING-WINDOW
SEGMENTATION BY EACH WINDOW SIZE AND OVERLAPPING RATE

in Table II, the accuracy according to each data point indicates
the average classification accuracy obtained from five subjects.
As a result, the SEED dataset indicated the highest average
accuracy when 10-s window size and 30% overlapping were
used. This is a 4% improved result than without overlapping
and 2% improved results than when 5-s window size was
used. In addition, the SEED dataset had the second highest
average accuracy when 20 s window size and 30% overlapping
were used. Meanwhile, the SEED data likewise DEAP data
showed the highest classification accuracy as 81% when data
segmented with 10-s window size and 30% overlapping. This
is a 5% improvement compared to the case with nonover-
lapping. The DREAMER data exhibited the highest accuracy
of 83% in the 10-s window size when 30% overlapping was
used, and it had an approximately 4% improvement over the
case with nonoverlapping. Therefore, based on these results,
we applied 10-s window size with 30% overlapping in the
sliding-window segmentation for all experiments regarding the
proposed emotion recognition-assisted framework.

2) Automatic Feature Extraction: We used the ET-MCSP to
extract the prominent features according to emotional states in
the EEG dataset. The energy threshold was determined based
on performance comparisons using various energy values.
Fig. 4 shows the average number of features and the average
classification accuracy for energy values between 75% and
95%, with a 5% difference between the values. As shown
in Fig. 4(a), with 15 subjects in the SEED dataset, when
an energy threshold of 95% was used, the average number
of extracted features was 19.85, and the average classifi-
cation accuracy was 83%. When the energy threshold was
90%, the average number of extracted features was 13.71,
and the average accuracy was 82.54%. Thus, the number
of features was reduced by approximately 30% when the
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Fig. 4. Average number of features and classification accuracy according to energy value. (a) SEED data. (b) DEAP data. (c) DREAMER data.

TABLE III

SEED DATA CLASSIFICATION ACCURACY USING FEATURES EXTRACTION METHODS AND LSTM

energy threshold was reduced from 95% to 90%, whereas the
classification accuracy was similar. For the remaining energy
values tested, the average number of features and average
accuracy decreased with lower energy threshold. The results
are shown in Fig. 4(b) and (c).

As shown in Fig. 4(b), in the DEAP dataset, an average
of three features was extracted with an average classification
accuracy of 80% when an energy threshold of 95% was used.
When an energy threshold of 90% was used, the average accu-
racy was 78% and the average number of features extracted
was 2.4. However, when the energy thresholds of 85% and
80% were used, the average number of features extracted was
2.4, with similar average accuracy. These results can interpret
that both energy thresholds of 80% and 85% include the
importance of information of similar amounts. Similarly, in the
DREAMER dataset, as shown in Fig. 4(c), the average number
of features extracted was reduced by approximately 30%
when an energy threshold of 90% was used rather than 95%;
however, the classification accuracy was approximately the
same. Therefore, in this article, we set the energy threshold to
90% in all the experiments to achieve a high accuracy rate with
a lower demand for computer processing time and memory
resources.

In this article, we extracted features according to each
emotional state by applying ET-MCSP to the data segmented
using the sliding-window segmentation method. Subsequently,
the LSTM model was built using the extracted features as the
input data. We compared our ET-MCSP method to the multi-
variate EMD (MEMD) [48] and improved VMD (IVMD) [49]
methods, which were used to extract the features of the
EEG data comprising multiple classes. The ET-MCSP method
proposed for extracting features in our new framework auto-
matically determines the number of features corresponding to
90% of the energy threshold of the entire dataset. Table III
presents the results of the classification of the SEED data.

As presented in Table III, as a result of extracting
features using MEMD and measuring the classification accu-
racy rate with the extracted features as the input data for
the LSTM model, the average classification accuracy was
64.4 (±15.78)% when three IMFs were used as feature values,
whereas the average classification accuracy when six IMFs
was used as input values was 67.1 (±14.23)%. Similarly,
the IVMD method showed an average classification accu-
racy of 65.6 (±14.06)% when three IMFs were used and
69.3 (±11.76)% when six IMFs were used. In contrast,
the ET-MCSP used in our proposed framework automatically
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Fig. 5. Classification accuracy using methods for extracting features and LSTM on DREAMER dataset.

extracted an average of 12.5 features as the input data for the
LSTM model, with an average classification accuracy of 81.1
(±13.35)%. In other words, the classification accuracy based
on the feature extraction using ET-MCSP on the eRAD-Fe
was improved by approximately 14% and 11% compared to
the existing methods.

Table IV shows the classification accuracy when using
the DEAP data. We segmented the DEAP data by applying
sliding-window segmentation method with an overlapping
of 30% and extracted the features using existing methods
and the proposed method. Subsequently, we measured the
classification accuracy with an LSTM model. An experiment
was conducted using five subjects who met the conditions
listed in Table I. The existing IVMD method showed a higher
classification accuracy than the MEMD method for all the
subjects, except for Subject 28 with six IMFs. In other words,
the classification accuracy of the IVMD method showed an
average improvement of approximately 12% over the MEMD
method. However, overall, it had a lower classification accu-
racy than the ET-MCSP method. The classification accuracy of
the ET-MCSP method showed improvements of 20% and 8%
in terms of classification accuracy over the MEMD and IVMD
existing methods, respectively. Fig. 5 shows the classification
accuracy when using the DREAMER dataset. Ten subjects
who met the conditions listed in Table I were used in the
experiment. As a result, our applied methods showed the
enhanced results of 19% and 5% compared to those of MEMD
and IVMD with six IMFs, respectively. Thus, the ET-MCSP
on the proposed framework was considered a more suitable
method for extracting features for emotion recognition than
the existing methods.

3) Emotional States Classification: We applied a deep
learning model used in recent recognition research, LSTM,
for the classification phase of eRAD-Fe. This method requires
various configuration parameters. One of the most important

considerations for the entire neural network is determining the
number of neurons in the hidden layers. Therefore, we exper-
imentally determined the number of neurons in the hidden
layers of the LSTM model for emotional states classification.
Fig. 6 shows the experimental results for the three EEG
datasets. In particular, we randomly selected one subject
dataset from each dataset and measured the classification
accuracy by tenfold cross validation, during which the number
of nodes in hidden layers was altered. In Fig. 6, the x-axis
indicates the number of neurons in the first hidden layer (or the
number of neurons in the second hidden layer) and the y-axis
indicates the average classification accuracy according to the
neuron number.

In this experiment, the number of neurons in the second
hidden layer was set to 80% of the number of neurons in
the first hidden layer. For example, if the number of neurons
in the first hidden layer is 100, the number of neurons in
the second hidden layer is set to 80. As shown in Fig. 6, all
the three datasets exhibited relatively high accuracy with the
number of neurons between 75 and 150 in the first hidden
layer. Among them, SEED and DREAMER datasets had the
highest accuracy, with 125 neurons in the first hidden layer
and 100 neurons in the second hidden layer. The DEAP
dataset showed the highest accuracy when the numbers of
neurons in the first and second hidden layers were 100 and
80, respectively. Furthermore, it also showed high accuracy
when the numbers of neurons in the first and second hidden
layers were 125 and 100, respectively. Therefore, we set the
number of neurons in the first and second hidden layers as
125 and 100, respectively, because they performed well on all
the three datasets based on the experimental results.

In this article, to verify the suitability of the LSTM model
used in the classification phase of the proposed new frame-
work, we conducted a comparative analysis with bidirec-
tional LSTM (Bi-LSTM) [50], which can improve model
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TABLE IV

DEAP DATA CLASSIFICATION ACCURACY USING FEATURES EXTRACTION METHODS AND LSTM

Fig. 6. Classification accuracy according to the number of neurons and
hidden layers in the LSTM model.

performance on sequence classification problems; SVM [27],
which exhibits the best performance among the existing
machine learning methods for classification; and DCNN
model [34], which is occasionally used in time-series classifi-
cation. The classification accuracy was measured using tenfold
cross validation for each subject. Fig. 7 shows the classifi-
cation accuracy results using Bi-LSTM, SVM, DCNN, and
LSTM classifiers with the three datasets. Fig. 7(a) shows the
results obtained using the SEED dataset, in which the average
accuracy rate was 81.33% when the Bi-LSTM classifier was
used, 73.01% when SVM was used, 81.30% when DCNN
was used, and 82.86% when LSTM was used. The DCNN,
Bi-LSTM, and LSTM classifiers had improved accuracies
of approximately 8%, 8%, and 9.8%, respectively, over the
SVM method, with the LSTM classifier having the high-
est accuracy among the four methods. Fig. 7(b) shows the
classification results obtained using the DEAP dataset. The
average accuracy of LSTM was 72.22%, which was 2%, 9%,
and 6% higher than those of Bi-LSTM, SVM, and DCNN,
respectively. As shown in Fig. 7(c), using the DREAMER
dataset, the average accuracy was 81.51% when the LSTM
classifier was used, which is an improvement of 2%, 9%, and
10% over those of Bi-LSTM, SVM, and DCNN, respectively.
In other words, as shown in Fig. 7, the performance was
enhanced when the LSTM model was applied to classify
emotional states in the classification stage of the new emo-
tion recognition-assisted framework rather than the Bi-KSTM,

TABLE V

CLASSIFICATION ACCURACY FOR EPILEPSY EEG, EEG MOTOR

ACTIVITY, AND EMG PHYSICAL ACTION DATASET

SVM, or DCNN methods. Therefore, the LSTM classifier is
more suited to the novel framework than the Bi-LSTM, SVM,
and DCNN classifiers.

In this article, we measured the execution complexity to
verify the scalability of the proposed framework. Fig. 8 shows
the computational cost of eRAD-Fe for varying numbers of
samples. Fig. 8(a) shows the measurement results of the
time required to process the SEED data using eRAD-Fe for
1200 samples. Fig. 8(b) shows the computational cost of the
DEAP data. Fig. 8(c) shows the computational cost for differ-
ent numbers of samples on the DREAMER data. The result
showed that the processing time of eRAD-Fe linearly increased
with the number of samples in the data. The computational
complexity of eRAD-Fe is O(i + k ∗ h), where i denotes the
number of classes, k denotes the number of output, and h
denotes the number of cells in the hidden layer. Therefore,
we can utilize our framework on other real-time data composed
of multiple classes. In addition, to verify the applicability
of eRAD-Fe, we evaluated the classification accuracies of
three time-series datasets, namely epilepsy EEG dataset with
three classes (ictal, inter-ictal, and pre-ictal) [51], EEG motor
imagery dataset with four classes (left-hand, right-hand, foot,
and tongue) [52], and EMG physical action dataset with six
classes (clapping, jumping, seating, hammering, headering,
and kneeing) [53]. Table V lists the classification accuracies,
which were measured by tenfold cross validation on these
three datasets. As a result, the epilepsy data had 81.67%
classification accuracy, whereas the motor imagery data had
81.18% classification accuracy. Finally, the EMG data had
a 72.22% accuracy. Through these experimental results, our
proposed framework demonstrates its applicability on data
with temporal characteristics.

V. DISCUSSION

Recently, developments in emotion recognition technology
have trended toward developing to fusion the sensing technol-
ogy with deep learning and database technology [3]. Emotions
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Fig. 7. Classification accuracies of Bi-LSTM, SVM, DCNN, and LSTM model. (a) SEED data. (b) DEAP data. (c) DREAMER data.

Fig. 8. eRAD-Fe scales linearly: wall clock time versus number of sample. (a) SEED. (b) DEAP. (c) DREAMER.

can be expressed verbally or nonverbally through the tone
of voice, facial expression, and physiological changes in the
nervous system. However, voice and facial expressions are not
reliable indicators of emotion because they can be intentionally
manipulated by the individual [54]. In comparison, physiolog-
ical signals are more accurate than other data used in emotion
recognition because they cannot be artificially generated [6].
In particular, because internal human emotional states can
be recognized in emotion recognition research using EEG,
this type of physiological signal is typically used in emotion
recognition research.

An EEG, which measures small electrical signals in the
brain, is very sensitive to external noise. Accordingly, in the
EEG signal analysis, preprocessing is required, which removes
unnecessary high-frequency and low-frequency components as
well as artifacts caused by movements [55]. In this article,
our emotion recognition-assisted framework does not place
significant weight on these preprocessing phases needed in
EEG analysis because the SEED and DEAP datasets used
in our experiments provide preprocessed data in which noise

and artifacts have been removed. Thus, we used the datasets
without additional preprocessing. Meanwhile, the DREAMER
dataset provided raw data that were not preprocessed. To verify
the efficiency and scalability of the proposed framework,
we used the DREAMER data recorded in a wireless environ-
ment. However, as previously mentioned, we filtered the noise
and artifacts from the DREAMER data using EEGLAB [17],
a widely known tool for EEG analysis, because eRAD-Fe
does not significantly consider the preprocessing phases. Our
emotion recognition-assisted framework, eRAD-Fe, comprises
stages for sliding-window segmentation for data increment,
automatic feature extraction of the emotional states, and deep
learning for classification.

In this article, we applied sliding-window segmentation,
which is used for forecasting and classifying time-series data,
as it can substantially solve the time complexity problem [56].
Because it is useful when the amount of data is limited, it is
also used to create the additional sample data needed for deep
learning [56]. The sliding-window segmentation method can
be used with or without an overlap. Meanwhile, EEG data have
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temporal and spatial characteristics, and time-series data such
as EEGs mostly use the sliding-window segmentation method
with overlapping. We used sliding-window segmentation with
a 10-s window length and a 30% overlap. Meanwhile, a fixed-
size sliding window may not always be an effective method
because the length of the transition activities in the data can
be different. A small window size can separate one activity,
whereas a large window size can include multiple activities.
Therefore, in both cases, they can elicit incorrect information
for classification [36]. We used a sliding window with a
fixed length proposed in [57] and applied the sliding-window
segmentation approach to reduce the computational complex-
ity and generate additional training data. However, additional
research is required to determine the optimal window length
for the best performance.

Recently, MEMD and IVMD methods have been proposed
to correctly extract the features of EEG signals. EMD is
a powerful multiresolution signal decomposition technology
that induces basis function from the signals [58]. It gen-
erates IMFs, including the band related to each emotion,
and extracts statistical features such as mean absolute devi-
ation, arithmetic mean, standard deviation, and root mean
square using fast FT. However, the method uses a recursive
approach that does not allow backward error correction for the
time–frequency decomposition approach, and noise cannot be
handled. To overcome these problems, a VMD method was
proposed. VMD decomposes into IMFs through a concur-
rent approach rather than a recursive approach [59]. VMD
chooses the decomposed IMFs and extracts features using
PSD. It is known to be less sensitive to noise than EMD [59].
These methods were expanded to extract the features of the
time-series data with good performance. Therefore, we used
the expanded MEMD and IVMD adapted for multidimensional
time-series data for our comparative experiments.

In the comparative experiments, we selected the IMFs in
both MEMD and IVMD considering the computational com-
plexity and memory resources. In other words, we considered
three and six IMFs to minimize the number of features to
reduce the computational complexity and memory consump-
tion and found that the classification accuracy was higher
when six IMFs were used as input data for the learning
phase. We compared the proposed framework with two other
methods. ET-MCSP on eRAD-Fe automatically extracted the
optimal features using an energy threshold of 90%, as dis-
cussed in Section IV, and the classification accuracy was
measured using the extracted features as the input data for
deep learning. As a result, eRAD-Fe using ET-MCSP afforded
a higher classification accuracy with fewer extracted features
than the existing methods. Therefore, we can assert that the
ET-MCSP in the proposed framework extracts only the optimal
features according to the emotional state and that our method
can reduce complexity and save memory compared to the
MEMD and IVMD methods.

In this article, we used the RNN-based LSTM deep learn-
ing method in the classification stage of the new emotion
recognition-assisted framework. An LSTM model is used to
classify time-series data such as EEGs with better performance
than DCNN model [60], as shown in the results in Section IV.

However, it is necessary to consider factors, such as time
and memory for learning, overfitting, and sensitivity of the
weight initialization. Thus, we composed an LSTM layer with
two hidden layers, as shown in Fig. 2. To prevent overfitting
problems in which the classification algorithm only adapts to
the training data, we applied a dropout rate of 50% to the
fully connected layer [61]. In addition, we considered the
computational complexity and memory resources of the LSTM
model by applying the sliding-window segmentation approach.

VI. CONCLUSION

Recently, numerous studies have been conducted on
human’s emotion detection and recognition to improve com-
munication between humans and machines. To improve the
efficiency and accuracy of the emotion recognition system,
it is necessary to identify and understand the user’s emotional
state. The main contribution of this article is to propose a novel
framework, eRAD-Fe, which provides an effective and reliable
emotion recognition-assisted framework based on EEG in
terms of data generation, feature extraction, and classification.
In particular, the proposed framework has stages comprising
sliding-window segmentation by applying an overlap for deep
learning, automatic feature extraction using ET-MCSP, and
an RNN-based LSTM model. According to the experimen-
tal results, the proposed framework with ET-MCSP had an
accuracy rate that was 5%–20% better than those of existing
methods for extracting features, and the LSTM model exhib-
ited results that were, on average, 1%–10% better than that
of the DCNN method for all considered datasets. In future
research, we will seek a new solution that can improve the
recognition rate from more complex emotion data based on our
emotion recognition technology. In addition, we will expand
the research on emotion recognition exploiting multimodal
data structure as well as the research that is able to improve
the recognition performance by removing noise and artifacts
included for measuring the data.
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